Перевод: с русского на английский

с английского на русский

may run

  • 1 режим


    mode, condition, regime,

    function, operation, rating, setting
    - (вид работы аппаратуры, системы) — mode
    - (заданные условия работы двигателя при определенном положении рычага управнения двигателем) — power setting. in changing the power setting, the power-control lever must be moved in the manner prescribed.
    - (мощность или тяга двигателя в сочетании с определениями как взлетный, крейсерский максимально-продолжитепьный) — power, thrust. takeoff power /thrust/. maximum continuous power /thrust/
    - (номинальный, паспортный, расчетный) — rating
    работа в заданном пределе рабочих характеристик в определенных условиях. — rating is а designated limit of operating characteristics based оп definite conditions.
    - (номинальная мощность или тяга двигателя, приведенная к стандартным атмосферным условиям) — power rating. power ratings are based upon standard atmospheric conditions.
    - (при нанесении покрытия)condition
    - (работы агрегата по производительности) — rating. pump may be operated at low or high ratings.
    - (тяги двигателя при апрелеленном положении руд) — thrust. run the engine at the takeoff thrust.
    - (частота действий)rate
    - автоматического захода на посадкуautomatic approach (eondition)
    - автоматического обмена данными с взаимодействующими системами (напр., ins, tacan) — (mode of) transmission and/or reception of specifled data between systems in installations such as dual ons, ins, tacan, etc.
    - автоматического управления полетомautomatic flight condition
    - автоматической выставки (инерциальной системы)self-alignment mode
    - автоматической работы двигателя. — engine governed speed condition

    at any steady running condition below governed speed.
    - автоматической (бортовой) системы управления (абсу, сау) — afcs (automatic flight control system) mode
    - автомодуляцииself-modulation condition
    -, автономный (системы) — autonomus /independent/ mode
    -, автономный (системы сау) — independent control mode
    - авторотации (вертолета) — autorotation, autorotative condition
    заход на посадку производится с выключенным двигателем на режиме авторотации несущего винта. — the approach and landing made with power off and entered from steady autorotation.
    - авторотации (воздушного винта, ротора гтд, вращающегося под воздействием набегающего воздушного потока) — windmilling. propeller ог engine rotor(s) freely rotating because of а wind or airstream passing over the blades.
    -, астроинерциальный — stellar inertial mode
    - астрокоррекцииstellar monitoring mode
    -, бесфорсажный (без включения форсажной камеры) — cold power /thrust/, попafterburning power /thrust/
    -, бесфорсажный (без впрыска воды или воднометаноловой смеси на вход двигателя) — dry power, dry thrust
    - бов (блока опасной высоты)alert altitude (select) mode
    -, боевой (работы двигателя) — combat /military/ rating, combat /military/ power setting
    - бокового управления (системы сту) — lateral mode. the lateral modes of fd system are: heading, vor/loc, and approach.
    - большой тяги (двиг.) — high power setting
    - буферного подзаряда аккумулятораbattery trickle charge (condition)
    - быстрого согласования (гиpoагрегата)fast slave mode
    - ввода данныхdata entry mode
    - вертикальной скорости (автопилота)vertical speed (vs) mode
    -, вертикальный (системы сду или сту) — vertical mode. the basic vertical modes are mach, ias, vs. altitude, pitch
    -, взлетный (двигателя) — takeoff power
    -, взлетный (тяга двиг.) — takeoff thrust
    -, взлетный (полета) — takeoff condition
    - висения (вертолета)hovering
    - "вк" (работы базовой системы курса и вертикали (бскв) при коррекции от цвм) — cmptr mode
    -, внешний (работы сау) — coupled /interface/ control mode
    -, возможный в эксплуатации) — condition (reasonably) expected in operation
    - вор-илс (работы директорией системы) — vor-loc mode, v/l mode
    - воспроизведения (магн. записи) — playback mode
    - выдерживания (высоты, скорости) — (altitude, speed) hold mode
    - выдерживания заданного курсаhog hold mode
    - "выставка" (инерциальной системы) — alignment /align/ mode
    в режиме "выставка" система автоматически согласуется e заданными навигационными координатами и производится выставка гироскопических приборов, — in align mode system automatically aligned with reference to navigation coordinates and inertial instruments are automatically calibrated.
    - выставки, автоматический (инерциальной навигационной системы) — self-alignment mode. the align status can be observed any time the system is in self-alignment mode.
    - вычисления параметров ветpa — wind calculator mode. wind calculator mode is based on manually entered values of tas
    - вызова (навигационных параметров на индикаторы)call mode
    - вызова на индикаторы навигационных параметров без нарушения нормального самолетовождения (сист. омега) — remote mode. position "r" enables transmission and/or reception of specified data between systems in installations such as dual ons, ins/ons, etc.
    -, генераторный (стартер-генератора) — generator mode
    стартер-генератор может работать в генераторном или стартерном режиме, — starter-generator can operate in generator mode or in motor mode (motorizing functi on).
    -, гиперболический (работы системы омега) — hyperbolic mode. in the primary hyperbolic mode the position supplied at initialization needs only to be accurate to within 4 nm.
    - гиромагнитного (индукционного) компаса (гmk)gyro-flux gate (compass) mode
    - гиромагнитной коррекции (гмк)magnetic slaved mode (mag)
    - гmк (гиромагнитного компаca)gyro-flux gate (compass) mode
    - горизонтального полетаlevel flight condition
    - горячего резерва (рлс)standby (stby) mode
    - гпк (гирополукомпаса) — dg (directional gyro) mode, free gyro mode of operation
    - "да-нет" (работы, напр., сигнальной лампы) — "yes-no" operation mode
    -, дальномерный (дме) — dме mode
    -, дальномерный (счисления пути) (системы омега) — dead reckoning mode, dr mode of operation, relative mode
    - двигателя (no мощности или тяге) — engine power /thrust/, power /thrust/ setting
    - (работы двигателя) для захода на посадкуapproach power setting
    -, дежурный (работы оборудования) — standby rate (stby rate)
    - завышенных оборотовoverspeed condition
    - заниженных оборотовunderspeed condition
    - заданного курса (зк)heading mode
    режим работы пилотажного командного прибора (пкп) дпя выхода на и выдерживания зк. — in the heading mode, the command bars in the flight director indicator display bank (roll) commands to turn the aircraft to and maintain this selected heading.
    - заданного путевого угла (зпу)course mode
    - захвата луча глиссадного (курсового) радиомаякаglideslope (or localizer) cарture mode
    - "земля-контур" (рлс) — contour-mapping mode
    - земного малого газаground idle power (setting)

    with engines operating at ground idle (power).
    - и/или тяга, максимальный продолжительный — maximum continuous power and/or thrust
    -, импульсный (сигн. ламп) — light flashing
    "откл. имп. режима" (надпись) — lt flash cutout
    - инерциально-доплеровский (ид)inertial-doppler mode
    -, инерциальный (работы навигационной системы) — inertial mode
    -, командный (автопилота) — (autopilot) command position

    both autopilots in command position.
    -, компасный — compass mode
    в компасном режиме магнитная коррекция курса обеспечивается датчиком ид. — when compass mode is selected, magnetic monitoring is applied from detector unit.
    -, компасный (apk) (автоматического радиокомпаса) — adf compass mode. the adf function switch is set to "comp" position, (to operate in the compass mode).
    - "контроль" (инерц. системы) — test mode
    обеспечивает автономную проверку системы без подкпючения контр.-повер. аппаратуры. — provides the system selftesting
    - (-) "контур" -(работы рлс) — contour (mode) (cntr)
    - коррекции (координат места)up-dating mode
    -, крейсерский (двиг.) — cruising /cruise/ power
    -, крейсерский (на з-х двигатолях) (полета) — 3-engine cruise
    -, крейсерский (полета) — cruising (condition)
    -, крейсерский (с поэтапным увеличением оборотов при испытании двигателя) — incremental cruise power (or thrust)
    -, крейсерский, номинальный (полета) — normal cruise (nc)
    -, крейсерский рекомендуемый (максимальный) — (maximum) recommended cruising power
    - крейсерского полета (для скоростной или максимальной дальности)cruise method
    -, критический (работы системы, двигателя) — critical condition
    - критический, по углу атаки — stalling condition
    - "курсовертикаль" ("kb") — attitude (атт) mode
    в данном режиме от системы не требуется получение навигационных параметров. выдаются только сигналы крена (у) и тангажа (у). — in this mode ins alignment and navigation data, except attitude, are lost.
    -, курса-воздушный — air data-monitored heading hoid mode
    -, курсовой (при посадке по системе сп или илс) — localizer mode
    - курсозадатчика (курсовой системы гмк или гик) — flux gate slaving mode. the mode when the directional gyro is slaved to the flux gate detector.
    -, курсо-доплеровский — doppler-monitored heading hold mode
    - магнитной коррекции (мк)magnetic(ally) slaved mode (mag)
    - максимальной (наибольшей) дальности — long range cruise (lrc). lrc is based on a speed giving 99 % of max, range in no wind and 100 % max. range in about 100 kt headwind.
    - максимальной продолжительности (полета)high-endurance cruise
    -, максимальный крейсерский (mkp) (выполняется на предельной скорости) — high speed cruise (method)
    -, максимальный продолжительный (мпр) (двиг.) — maximum continuous power (мcp)
    -, максимальный продолжительный (по тяге) — maximum continuous thrust (мст)

    increase thrust to мст.
    - малого газаidling power (setting)
    попеременная работа двигателя на номинальной мощности и режиме малого газа или тяги, — one hour of alternate fiveminute periods at rated takeoff power and thrust аnd at idling power and thrust.
    - малого газа на земле — ground idling power /conditions/
    - малого газа при заходе на посадку — approach idling power /conditions/
    - малой тяги (двиг.) — low power setting
    - (-) "метео" (работы рлс) — weather (mode)
    - "метео-контур" (рлс) режим — contour-weather mode
    - (5-ти) минутной мощности (двиг.) — (five-) minute power
    - "мк" (магнитной коррекции) — mag
    - мощности, максимальный продолжительный (двиг.) — maximum continuous power
    - мощности, чрезвычайный — emergency power
    - набора высотыclimb condition
    - "навигация" (инерциальной системы) — navigation (nav) mode
    при заданном режиме система обеспечивает вычисление навигационных и директорных параметров и выдает информацию на пилотажные приборы и сау. — in this mode system computes navigation and steering data. provides attitude information to flight instruments and fcs.
    - наибольшей (макеимальной) дальностиlong range cruise (lrc)
    горизонтальный полет на скорости наибольшей дальности, на которой километровый расход топлива при полете на заданной высоте наименьший. — а level flight at а given altitude and best range cruise speed giving the minimum kilometric fuel consumption.
    - наибольшей продолжительности (полета)high-endurance cruise
    горизонтальный полет на скорости наибольшей продолжнтельности, на которой часовой расход топлива при полете на заданной высоте наименьший. — а level flight at а given altitude and high-endurance cruise speed giving the minimum fuel flow rate (in kg/h or liter/h)
    - начала автоматической работы (нар режим начала автоматического регулирования работы гтд) — engine governed run/operation/ onset mode
    - нвк (начальной выставкиinitial heading alignment
    -, непрерывной (обработки данных) — burst mods (data processing)
    -, нерасчетный — off-design rating
    -, неуетановившийся — unsteady condition
    - (0.65) номинала, на бедной смеси — (65%) power, lean mixture setting
    -, номинальный (двиг.) — (power) rating, rated power
    -, номинальный (mпp) — maximum continuous power
    - нормального обогрева (эп.) — normal-power heat (condition)
    -, нормальный (работы агрегата) — normal rating
    -, номинальный крейсерский (полета) — normal cruise (nc). used on regular legs and based on m = 0.85.
    - обзора земной поверхности (рлс)ground-mapping (map) mode
    - обнаружения грозовых образеванийthunderstorm detection mode (wx)
    - "обогрев" (инерц. системы) — standby mode
    режим предназначен для создания необходимых температурных условий работы элементов инерциальной системы (гироскопов, блоков автоматики и электроники). — the standby mode is а heating mode during which fast warm-up power is applied to the navigation unit until it reaches operating temperature.
    - обогреваheating mode
    - обогрева лобовых стекол "слабо", "сильно" — windshield "warm up", "full power" heating rating
    -, одночасовой максимальный (двиг.) — maximum one-hour power
    - ожидания ввода координат исходного места самолетаinitial position entry hold mode
    - ожидания посадкиholding
    -, оптимальный экономический (двиг.) — best economy cruising power
    - освещения меньше-больше (яркость) — dim-brt light modes check lights in dim and brt modes.
    -, основной навигационный (сист. "омега") — primary navigation mode
    - отключенного шага (программы)step off mode
    - отсутствия сигналов ивс (системы омега)no tas mode
    - оценки дрейфа гироскопаgyro drift evaluation mode
    - перемотки (маги, ленты) — (tape) (re)wind mode
    - пересиливания автопилота — autopilot overpower operation /mode/
    -, переходный — transient condition
    - планированияgliding condition
    - повышенных оборотовoverspeed condition
    - полета — flight condition /regime/
    состояние движения ла, при котором параметры, характеризующие это движение (например, скорость, высота) остаются неизменными в течение определенного времени. — it must be possible to make а smooth transition from one flight condition to any other without exceptional piloting skill, alertness, or strength.
    - полета, критический — critical flight (operating) condition
    - полета на курсовой маяк (при посадке) — localizer (loc) mode. flying in loc (or vor) mode.
    - полета на станцию ворvor mode
    - полета, неустановившийся — unsteady flight condition
    - полета по маяку ворvor mode
    - полета по системе илсils mode
    - полета по условным меридианамgrid mode
    данный режим применяется в районах, не обеспечивающих надежность компасной информации. — the grid mode can be used in areas where compass information is unreliable.
    - полета, установившийся — steady flight condition
    - полетного малого газаflight idle (power)
    -, полетный (двиг.) — flight power
    -, пониженный (ниже номинала) (двиг.) — derating
    - пониженных оборотовunderspeed condition
    при возникновении режима пониженных оборотов рогулятор оборотов вызывает дополнительное открытие дроссельного крана. — for underspeed condition, the governor will cause the larger throttle opening.
    -, поперечный (системы сду или сту) — lateral mode. the basic lateral modes are heading, vor/loc and approach.
    -, посадочный (полета) — landing condition
    - правой (левой) коррекции (оборотов двигателя вертолета) — engine operation with throttle control twist grip turned clockwise (counterclockwise)
    -, практически различаемый — practically separable operating condition
    к практически различаемым режимам полета относятся: взлетный, крейсерский (mapшрутный) и посадочный, — practically separable operating condition, such as takeoff, en route operation and landing.
    - (работы двигателя), приведенный к стандартной атмосфере — power rating based upon standard atmospheric conditions
    - приведения к горизонтуlevelling
    - продления глиссадыglideslope extension mode

    the annunciator indicates when glideslope extension (ext) mode provides command signals to the steering computer.
    - продольного управления (системы сту) — vertical mode. the vertical modes of fd system are: mach, ias, vs. altitude, pitch.
    - просмотра воздушного пространства (переднего)airspace observation mode (ahead of aircraft)
    - просмотра воздушного пространства на метеообстановку (рлс)radar weather observation mode
    - просмотра земной поверхности (рлс) — ground mapping operation. the antenna is tilted downward to receive ground return signals.
    - прямолинейного горизонтального полетаstraight and level flight condition
    - (частота) пусков ракет(rocket firing) rate
    - "работа" (положение рычага останова двигателя) — run
    - "работа" (инерциальной навигационной системы) — navigate mode, nav mode. system automatically changes from alignment to navigate mode.
    - работыcondition of operation

    test unit in particular condition of operation.
    - работы (агрегата, напр., наcoca) — rating
    - работы (агрегата по продолжительности)duty (cycle)
    режим работы может быть продопжитепьным или повторно-кратковременным. — the duty cycle may be continuous or intermittent.
    - работы (инерциальной системы) — mode of operation, operation mode
    - работы, автоматический (двиг.) — governed speed /power/ setting
    - работы автоматической системы управления (абсу, сау) — autoflight control system (afcs) mode
    - работы автопилотаautopilot mode
    - работы автопилота в условиях турбулентностиautopilot turbulence (turb) mode
    при работе в условиях турбулентности включается демпфер рыскания для обеспечения надежной управляемости и снижения нагрузок на конструкцию ла. — use of the yaw damper with the autopilot "turb" mode will aid in maintaining stable control and in reducing structural loads.
    - работы автопилота при входе в турбулентные слои атмосферыautopilot turbulence penetration mode
    данный режим применяется при полете в условиях сильной турбулентности воздуха, — use of the autopilot turbulence penetration mode is recommended for autopilot operation in severe turbulence.
    - работы автопилота с директорной системой, совмещенный — ap/fd coupled mode
    - работы двигателя (по мощности)engine power (setting)
    - работы двигателя (по тяге)engine thrust (setting)
    - работы двигателя (по положению руд)engine power setting
    - работы двигателя в особых условиях, (повышенный) — emergency (condition) power
    - работы двигателя на землеengine ground operation
    - работы двигателя на малых оборотахengine low speed operation
    - работы двигателя, номинальный — engine rating. ths jt9d-з-за engines operate at jt9d-3 engine ratings.
    - работы (двигателя), приведенный к стандартной атмосфере — power rating /setting/ based upon standard atmospheric conditions
    - работы источника света, установившийся — light source operation at steady value
    - работы, кратковременный — momentary operating condition
    - работы no времени (агрегата)time rating
    - работы, повторно-кратковременный (агрегата) — intermittent duty
    пусковая катушка работает в повторно-кратковременном режиме. — booster coil duty is intermittent.
    - работы (системы), полетный — (system) flight operation
    при выпуске передней опоры шасси система переключается на полетный режим, — when the nose lg is eхtended, the function of the system is transferred to flight operation.
    - работы no сигналам станции омегаomega mode operation
    - работы, продолжительный (агрегата) — continuous duty
    генератор двигателя работает в продолжительном режиме, — the engine-driven generator duty is continuous.
    - работы противообледенительной системы, нормальный — normal anti-icing
    - работы противообледенительной системы, форсированный — high anti-icing
    - работы самолетного ответчика (а - на внутренних линиях, в - на международных) — transponder mode (а - domestic, в - international)
    - работы системы траекторного управления (сту), боковой — lateral mode
    - работы сту, продольный — vertical mode
    - рабочий (работы автопилота) — (autopilot) active position both autopilots in command positions, one active and one standby.
    - рабочий (работы оборудования)normal rate (norm rate)
    - равновесной частоты (вращения) (двиг.) — on-speed condition
    - равновесных оборотовоп-speed condition
    работа регулятора оборотов в режиме равновесных оборотов. — the constant speed governor operation under on-speed condition.
    -, радиотелеграфный, тлг (автоматич. радиокомпаса) — c-w operation
    -, радиотелеграфный (связи) — c-w communication, radio telegraphic communication
    -, радиотелефонный, тлф (apk) — rt (radio telephone), voice operation (v), voice
    -, радиотелефонный (связи) — voice communication, radio telephone communication
    переключить передатчик на радиотелефонную связь, — set the transmitter for voice communication.
    -, рамочный (арк) — loop mode
    - распознавания светилаstar identification mode
    -, располагаемый максимальный продолжительный (двиг.) — available maximum continuous power
    -, расчетный — rating
    -, расчетный (условия работы) — design condition
    - регулирования избыточного давления (системы скв)differential pressure control (mode)
    -, резервный (аварийный) (дв.) — emergency power rating
    работа двигателя при гидромеханическом управлении оборотами и температурой при отказе электронной системы управления.
    -, резервный (работы автопилота) — (autopilot) standby position
    - самовращения (несущего винта) — autorotation, autorotative condition
    - самоориентирования (переднего колеса шасси)castoring
    - скоростной дальностиhigh-speed cruise method
    - "слабо", "сильно" (обогрева лобовых стекол) — (windshield heat) warm up, full power
    - слабого обогрева (эл.) — warm-up heat (condition)
    -, следящий (закрылков) — (flap) follow-up operation (mode)

    when the flaps are raised, the flap follow-up system operates the slat control valve.
    -, смешанный (работы спойлеров) — drag/aileron mode. а drag/aileron mode is used during descent both for retardation and lateral control.
    - сниженияdescent condition
    -, совмещенного управления — override control mode
    оперативное вмешательство в работу включенной системы.
    -, совмещенный (при работе с др. системой) — coupled mode
    -, совмещенной (работы автопилота) — autopilot override operation /mode/
    в этом режиме отключаются рм и корректор высоты и летчик оперативно вмешивается в управление ла посредством штурвала и педалей. — то manually or otherwise deliberately overrule autopilot system and thereby render it ineffective.
    -, совмещенный — both mode
    (работы рлс в режимах обзора метеообразований и земной поверхности и индицирования маяков) — for operation in rad and bcn modes.
    - согласования (автопилота)synchronization mode
    - согласования (работы следящей системы) — slave /synchronization/ mode
    - стабилизации (крена, тайгажа, направления, автопилота) — roll (pitch, yaw) stabilization mode
    - стабилизации (работы сту)hold mode

    the vertical and lateral modes are hold modes.
    - стабилизации крена (в сту) — roll /bank/ (attitude) hold mode
    - стабилизации курса (aп)heading hold mode
    - стабилизации тангажа (в сту)pitch (attitude) hold mode
    -, стартерный (всу) — engine start mode

    apu may run in the engine start mode or as apu.
    -, стартерный (стартер-гоноратора) — motor(izing) mode, (with) starter-generator operating as starter
    - стопорения (работы следящей системы)lock-out mode
    - "сход(на) нзад" — return-to-selected altitude (mode)
    - счисления пути (или дальномерный) (системы омега) — dead reckoning mode, dr mode of operation, relative mode
    -, температурный — temperature condition
    - тлг (работы арк)c-w operation
    - тлф (арк) — rt (radio telephone), voice
    -, тормозной (работы спойле — drag /retardation/ mode
    - управленияcontrol mode
    - управления в вертикальной плоскости (ап)vertical mode
    - управления в горизонтальной плоскости (инерциальной системы)lateral control mode
    управление по курсу, на маяки вор и крм. — the basic lateral modes are heading, vor/loc and approach.
    - управления, позиционный (no командно-пилотажному прибору) — flight director control mode
    - управления по крену (aп)roll (control) mode
    - управления, поперечный (автопилота) — lateral mode
    - управления по тангажу (ап)pitch (control) mode
    - управления, продольный (автопилота) — vertical mode. vertical command control provides either vertical speed or pitch command.
    - управления, штурвальный — manual (flight) control
    -, усиленный (дополнительный, форсированный) (двиг.) — augmented power (rating)
    при данном режиме увеличиваются температура газов на входе в турбину, обороты ротора или мощность на валу. — engine augmented takeoff power rating involves increase in turbine inlet temperature, rotor speed, or shaft power.
    -, установленный (для данных условий испытаний двигателя) — rated power. а 30-hour run consisting of alternate periods of 5 minutes at rated takeoff power.
    -, форсажный (с включенной форсажной камерой) — reheat /afterburning/ power /thrust/
    -, форсажный (по тяге двиг.) — reheat thrust
    -, форсажный (с впрыском воды или водометаноловой смеси на вход двигателя) — wet power, wet thrust
    -, форсажный, полный (двиг.) — full reheat power /thrust/
    - форсированного обогреваfull-power heat (conditions)
    -, форсированный (работы агрегата) — high rating
    -, форсированный (усиленный) (двиг.) — augmented power /thrust/
    -, форсированный взлетный — augmented takeoff power
    - холостого хода (двигателя вертолета с отключенной трансмиссией)idle run power (with rotor drive system declutched)
    - холостого хода (генератора, всу, электродвигателя) — по-load operation
    -, чрезвычайный (работы двигателя в особых условиях) — emergency (condition) power
    -, чрезвычайный (по тяге двигателя) — emergency thrust
    -, чрезвычайный, боевой (двиг.) — combat /war/ emergency power
    -, штурвальный (управления ла) — manual control mode
    -, экономичный крейсерский — (best) economy cruising power
    -, эксплуатационный (работы, агрегата, двигателя, самолета) — operational /operating/ condition
    -, эксплуатационный (двиг.) — operational power rating
    эксплуатационные режимы включают: взлетный, максимальный продолжительный (крейсерский), — operational power ratings cover takeoff, maximum continuous (and cruising) power ratings.
    -, эксплуатационный полетный (двиг.) — flight power (rating)
    двигатель должен нормально работать на всех эксплуатационных (полетных) режимах, — the engine must be capable of operation throughout the flight power range.
    -, электромоторный (стартер генератора) — motor(izing) mode
    -, элеронный (работы спойлеров) — aileron mode, lateral control augmentation mode
    в p. (работы оборудования) — in mode

    presently flying in heading (h) mode on a 030° heading.
    в p. самоориентирования (о переднем колесе шасси) — in castor, when castoring
    в пределах эксплуатационных р. — within (approved) operating limitations
    выход на р. малого газа (двиг.) — engine (power) setting at idle, engine idle power setting
    изменение p. работы двигатепя — change in engine power (or thrust)
    метод установки (получения) (заданного p. работы двигателя) — methods for setting (engine) thrust /power/
    на (взлетном) р. (двиг.) — at (takeoff) power

    with the engine operating at takeoff power.
    на (взлетном) р. (полета) — under (takeoff) condition
    на максимальном продолжительном p. — at maximum continuous power
    обороты (двигателя) на взлетном р. — takeoff (rotational) speed engine run at takeoff power with takeoff speed.
    обороты (двигателя) на максимальном продолжительном p. — maximum continuous speed engine run at rated maximum continuous power with maximum continuous speed.
    переключение p. (работы оборудования) — mode selection
    переход (вертолета) от нормального р. к р. висения — reconversion
    полет на крейсерском р. — cruise flight
    полет на р. висения — hovering flight
    при работе двигателя на взлетном р. — with engine at takeoff power, with takeoff power on (each) engine
    при работе каждого двигателя на р., не превышающем взлетный — with not more than takeoff power on each engine
    при установившемся р. работы с полной нагрузкой — at steady full-load condition
    (75)% максимального продолжительного (или номинального) р. — (75) percent maximum continuous power (thrust)
    работа на (взлетном) р. (двиг.) — (takeoff) power operation, operation at takeoff power
    установка p. работы (двиг.) — power setting
    этап p. (при испытаниях двигателя) — period. during the third and sixth takeoff power periods.
    включать р. (работы аппаратуры системы) — select mode
    включать р. продольного (поперечного) управления (aп, сду) — select vertical (lateral) mode
    включить систему в режим (напр., "выставка") — switch the system to (align mode, switch the system to operate in (align mode)
    выдерживать (взлетный) р. (двиг.) — maintain (takeoff) power
    выходить на (взлетный) р. (двиг.) — come to /attain, gain/ (takeoff) power /thrust/, set engine at takeoff power /thrust/, throttle to takeoff power /thrust/
    выходить на р. прямолинейного горизонтального полета гонять двигатель на (взлетном) р. — recover to straight and level flight run the engine at (takeoff) power
    изменять р. работы двигателя — change engine power
    изменять установленный р. (двиг.) — change power setting
    лететь в автоматическом р. управления — fly automatically
    лететь в курсовом р. — fly heading (н) mode
    лететь в штурвальном р. — fly manually
    передавать в телеграфном р. — transmit on c-w /rt/
    передавать в радиотелефонном р. — transmit on voice
    переключать р. — select mode
    переключаться на р. — switch to mode the computer automatically switches to course mode.
    переходить (автоматически) в режим (напр., курсовертикаль) — system automatically changes to атт mode
    переходить с р. (малого газа) на (взлетный) р. (двиг.) — come from (idle) power to (takeoff) power
    проводить р. (30 часовых) испытаний последовательно чередующимися периодами по... часов — conduct а (30-hour) run consisting of alternate periods of... hours
    работать в р. — operate on /in/ mode
    работать в режиме гпк — operate in dg mode, be servoed to directional gyro
    работать в индикаторном р. (о сельсине) — operate as synchro indicator
    работать в трансформаторном р. (о сельсине) — operate as synchro transformer
    работать на (взлетном) р. (двиг.) — operate at (takeoff) power /thrust/
    работать на р. малого газа — idle, operate at idle (power)
    увеличивать р. работы (двиг.) (до крейсерского) — add power (to cruising), throttle (to cruising power)
    уменьшать p. двигателя (до крейсерского) — reduce power to cruising
    устанавливать взлетный р. (двиг.) — set takeoff power /thrust/, set engine at takeoff power
    устанавливать компасный р. работы (apk) — select compass mode
    устанавливать p. набора высоты — establish climb
    устанавливать р. полета — establish flight condition
    устанавливать рамочный р. работы (арк) — select loop mode
    устанавливать (взлетный) р. работы двигателя — set (taksoff) power /thrust/, set the engine at takeoff power /thrust/
    устанавливать p. снижения — establish descent

    Русско-английский сборник авиационно-технических терминов > режим

  • 2 достигать

    Русско-английский научно-технический словарь переводчика > достигать

  • 3 достигать

    This type of potential ranges up to about 100 millivolts.

    After the orbit has attained its desired altitude...

    This amounts up to one third of the velocity of light.

    The output reaches its peak.

    In metazoans, this may amount to as much as 11% of the deoxycytidines.

    II

    Almost complete conversion can be obtained at ordinary pressure.

    No improvement was brought about (or attained, or achieved) by applying this method.

    These bodies of magma do not make it to the surface and solidify at depth...

    * * *
    Достигать -- to achieve, to attain, to accomplish, to reach, to measure up to; to amount (всегда с указанием значения величины); to meet, to realize (о цели); to make (об успехах)
     This was accomplished by extending the outer legs of the coils to a large radial distance.
     This is usually accomplished by proper installation practices as described in reference [...].
     While the resulting engine will not measure up to the full potential which today's technology could provide, the compromise is small.
     The total solids burden passing into the second chamber amounted to 4207 mg/SCM.
     Tighten the flange nuts alternately in small equal increments until one of the nuts reaches the minimum recommended torque.

    Русско-английский научно-технический словарь переводчика > достигать

  • 4 составлять

    The three instruments form (or comprise, or represent) a signal generator assembly.

    Fourteen die castings make up (or constitute) the principal components of...

    These particles compose the hazes observed on Jupiter.

    These three bonds comprise the triple bond.

    II

    A mean sidereal day comprises 23 hr 56 min and 4 sec.

    The canyon forms 5 percent of the satellite's surface.

    Nitrogen, oxygen and argon together account for 99.97% of...

    The cost of cooling towers may amount to 50% of the total cost of...

    The value of this merchandise comes to only 10.4% of the total.

    Argon constitutes (or makes up) almost 1% of the air.

    The housing measures 12 in. in length.

    The kinetic energies range from zero (up) to 3.5 MeV.

    The investments total 10 mln dollars.

    In man the adrenals comprise 0.0002% of the body weight.

    The figure represents about 27% of the gross national product.

    Electrons contribute (or constitute) the bulk of ordinary matter.

    The computer generates production reports.

    IV

    We formulate (or make up) special compositions for ceramic bodies.

    These errors may be allowed for by making up a calibration card for the instrument.

    When drawing up a drill nomenclature...

    A design diagram may be prepared by plotting...

    To compile a map, a dictionary, a report...

    Русско-английский научно-технический словарь переводчика > составлять

  • 5 забегать

    I заб`егать
    сов.
    1) ( засуетиться) begin to bustle [fuss around]
    2) (о глазах, взгляде) flicker uneasily, assume a shifty expression
    II забег`ать
    несов. - забега́ть, сов. - забежа́ть
    1) (в вн.; вбегать) run (into)

    забегать далеко́ в лес — run far into the forest

    2) (с нареч.; обгонять других) run ahead

    забегать спра́ва [сле́ва] — make a quick run from the right [left]

    3) (за вн.; бегом скрываться за чем-л) run (behind)
    4) разг. (к кому́-л; куда́-л; посещать ненадолго) (ср. тж. заглядывать 2), заходить I); run in, drop in (at some place); call (on smb), make a brief visit (to)

    отчего́ вы не забежи́те как-нибу́дь? — why don't you drop in / around / by some time?

    е́сли бу́ду побли́зости, мо́жет, и забегу́ к вам на па́ру мину́т — if I am in the neighbourhood, I may run in for a few minutes

    ••

    не забега́я вперёд — without rushing / anticipating things

    Новый большой русско-английский словарь > забегать

  • 6 увеличение может достигнуть суммы в десять тысяч фунтов

    Универсальный русско-английский словарь > увеличение может достигнуть суммы в десять тысяч фунтов

  • 7 приведёт бог

    приведёт бог (господь, судьба, случай)
    уст.
    God willing; it may happen

    Глов. Покорнейше благодарю вас, господа, за приятное знакомство. Жаль только, право, что вот перед самым концом. А впрочем, авось приведёт бог опять где-нибудь столкнуться. (Н. Гоголь, Игроки)Glov. I am most grateful to you, gentlemen, for a pleasant acquaintanceship. The only pity is that it took place at the last moment. However, God willing, we may run into each other again somewhere.

    Русско-английский фразеологический словарь > приведёт бог

  • 8 встречать

    Русско-английский научно-технический словарь переводчика > встречать

  • 9 встречать

    You may run across (or encounter) other synonyms.

    The calculus of infinitesimals was received with profound skepticism by many philosophers.

    Thus, the current encounters (or meets with) less resistance.

    Русско-английский научно-технический словарь переводчика > встречать

  • 10 греться

    Русско-английский научно-технический словарь переводчика > греться

  • 11 составлять от ... до

    Русско-английский научно-технический словарь переводчика > составлять от ... до

  • 12 греться

    Русско-английский научно-технический словарь переводчика > греться

  • 13 двигатель



    - (газотурбинный, поршневой, тепловой) — engine
    - (гидравлический, пневматический, электрический) — motor
    -, авиационный — aircraft engine
    двигатель, используемый или предназначенный к использованию в авиации для перемещения и (или) поддержания ла, на котором он установлен, в воздухе (рис. 46). — an engine that is used or intended to be used in propelting or lifting aircraft.
    - аналогичной конструкцииengine of identical design and сonstruction
    - без наддува (ид)unsupercharged engine
    -, безредукторный — direct-drive engine
    -, безредукторный винто-вентиляторный (незакопоченный) — unducted fan engine (udf)
    винтовентиляторы вращаются непосредственно силовой (свободной) турбиной с противоположным вращением рабочих колес. — fans are driven directly by a counter-rotating turbine, eliminating complexity of a reduction gearbox.
    -, бензиновый — gasoline engine
    -, боковой (рис. 13) — side engine
    - в подвесной мотогондолеpod engine
    -, вентиляторный, с противоположным вращением вентиляторов — contrafan engine
    - вертикальной наводки, приводной (стрелкового вооружения) — (gun) elevation drive motor
    -, винто-вентиляторный (тввд) — prop-fan engine
    -, включенный (работающий) — operating/running/engine
    -, внешний (по отношению к фюзеляжу) (рис. 44) — outboard engine
    - внутреннего сгоранияinternal-combustion engine
    -, внутренний (по отношению к наружному двигателю) (рис. 44) — inboard engine
    - воздушного охлаждения (пд)air-cooled engine
    двигатель, у которого отвод тепла от цилиндров производится воздухом, непосредственно обдувающим их. — an engine whose running temperature is controlled by means of air cooled cylinders.
    -, вспомогательный (всу) — auxiliary power unit (apu)
    -, выключенный — shutdown engine
    -, выключенный (неработающий) — inoperative engine
    -, высокооборотный — high-speed engine
    -, высотный — high-altitude engine
    -, газотурбинный (гтд) — turbine engine
    -, газотурбинный (вертолетныи) — helicopter turboshaft engine
    -,газотурбинный-энергоузел (стартер-энергоузел) — turbine-starter - auxiliary power unit, starter - apu
    - (-) генераторmotor-generator
    устройство для преобразования одного вида эл. энергии в другую (напр., переменный ток в постоянный). — а motor-generator combination for converting one kind of electric power to another (e.g. ас to dc)
    - горизонтальной наводки, приводной (стрелкового вооружения) — (gun) azimuth drive motor
    - двухвальной схемы (турбовальный)two-shaft turbine engine
    -, двухвальный турбовинтовой — two-shaft turboprop engine
    -, двухвальный турбореактивный — two-shaft /-rotor, -spool/turbojet engine
    -, двухкаскадный — two-rotor /-shaft, -spool/ engine, twin-spool engine
    двухвальный турбореактивный двигатель называется также двухроторным или двухкаскадным двигателем. — а two-rotor engine is a twoshaft or two-spool engine with lp and hp compressors and hp and lp turbines.
    -, двухкаскадный, двухконтурный, (турбореактивный) — two-rotor /twin-spool/ by-pass turbo-jet engine
    -, двухкаскадный, турбовальный, газотурбинный, со свободной турбиной — two-rotor /twin-spool/ turboshaft engine with free-power turbine
    -, двухкаскадный, турбовентиляторвый с устройством отклонения направления тяги — two-rotor /twin-spool/ turbofan engine with thrust deflector system
    -, двухконтурный — by-pass /bypass/ engine
    гтд, в котором, помимо основного внутреннего (первого) контура, имеется наружный (второй) контур, представляющий собой канал кольцевого сечения, оканчивающийся у реактивного сопла. — in а by-pass engine, a part of the air leaving the lp cornpressor is dueted through the by-pass duct around the engine main duct to the exhaust unit to be exhausted to the atmosphere.
    -, двухконтурный с дожиганиem во втором контуре — duct-burning by-pass engine
    -, двухконтурный со смешиванием потоков наружного и и внутренного контуров — by-pass exhaust mixing engine
    -, двухроторный — two-rotor engine
    - двухрядная звезда (пд)double-row radial engine
    двигатель, у которого цнлиндры расположены двумя рядами радиально относительнo одного oбщего коленчатоro вала. — an engine having two rows of cylinders arranged radially around а common crankshaft. the corresponding front and rear cylinders may or may not be in line.
    -, двухтактный (пд) — two-cycle engine
    -, дозвуковой — subsonic engine
    -, доработанный по модификации (1705) — engine incorporating mod. (1705), post-mod. (1705) engine
    -, звездообразный — radial engine
    поршневой двигатель с радиальным расположением цилиндров, оси которых лежат в одной, двух или нескольких плоскостях, перпендикулярных к оси коленчатого вала — an engine having stationary cylinders arranged radially around а commom crankshaft.
    -, звездообразный двухрядный — double-row radial engine
    -, звездообразный однорядный — single-row radial engine
    -, исполнительный (эл.) — (electric) actuator, servo motor
    -, исполнительный, канала курса (крена или тангажа) (гироплатформы) — azimuth (roll or pitch) servornotor
    -, карбюраторный (пд) — carburetor engine
    -, коррекционный (гироскопического прибора) — erection torque motor
    -, критический — critical engine
    двигатель, отказ которого вызывает наиболее неблагоприятные изменения в поведении самолета, управляемости и избытке тяги. — "critical engineп means the engine whose failure would most adversely affect the performance or handling qualities of an aircraft.
    -, крыльевой (установленный на крыле) — wing engine
    - левого вращенияengine of lh rotation
    -, маломощный — low-powered engine
    -, многорядный (пд) — multirow engine
    -, многорядный звездообразный — multirow radial engine
    -, модифицированный — modified engine
    - модульной конструкцииmodule-construction engine

    lp compressor - module i, hp compressor - module 2, etc.
    -, мощный — high-powered engine
    -, недоработанный no модификацин (1705) — engine not incorporating mod. (1705), pre-mod. (1705) engine
    -, незакапоченный — uncowled engine
    - непосредственного впрыска (пд)fuel injection engine
    -, неработающий — inoperative engine
    -, одновальный (гтд) — single-shaft /single-rotor/ turbine engine
    -, одновальный двухконтурный — single-shaft /single-rotor/ bypass engine
    -, одновальный турбовентиляторный — single-shaft /single-rotor/ turbofan engine
    -, одновальный турбовинтовой — single-shaft turboprop engine
    -, одновальный турбореактивный — single-shaft /single-rotor/turbojet engine
    -, однорядный (пд) — single-row engine
    -, опытный — prototype engine
    двигатель определенного тиna, еще не прошедший типовые государственные испытания. — the tirst engine of a type and arrangement not approved previously, to be submitted for type approval test.
    -, основной — main engine
    -, оставшийся (продолжающий работать) — remaining engine
    -, отказавший — inoperative/failed/ engine
    - отработки (эл., исполнительный) — servomotor
    - отработки следящей системыservo loop drive motor
    - подтяга (патронной ленты)ammunition booster torque motor
    -, поперечный коррекционный (авиагоризонта) — roll erection torque motor
    -, поршневой (пд) — reciprocating engine
    - правого вращенияengine of rh rotation
    -, продольный коррекционный (авиагоризонта) — pitch erection torque motor
    -, прямоточный — ramjet engine
    двигатель без механического компрессора, в котором сжатие воздуха обеспечивается поступательным движением самого двигателя. — а jet engine with no meehanical compressor, and using the air for combustion compressed by forward motion of the engine.
    - работающийoperating engine
    -, работающий с перебоями — rough engine
    двигатель, работающий с неисправной системой зажигания или подачи топлива (рабочей смеси) — an engine that is running or firing unevenly, usually due to а faulty condition in either the fuel or ignition systems.
    - рамы крена (гироплатформыroll-gimbal servomotor
    - рамы курса (гироплатформыazimuth-gimbal servomotor
    - рамы тангажа (гироплатформы)pitch-gimbal servomotor
    -, реактивный — jet-engine
    двигатель, в котором энергия топлива преобразуется в кинетическую энергию газовой струи, вытекающей из двигателя, a получающаяся за счет этого сила реакции нenоcредственно используется как сила тяги для перемещения летательного аппарата. — an aircraft engine that derives all or most of its thrust by reaction to its ejection of combustion products (or heated air) in a jet and that obtains oxygen from the atmosphere for the combustion of its fuel.
    -, реактивный, пульсирующий — pulse jet (engine)
    применяется для непосредственного вращения несущеro винта вертолета. — pulse jets are designed for helicopter rotor propulsion.
    -, ремонтный — overhauled engine
    серийный двигатель, отремонтированный или восстановленный до состояния, удовлетворяющего требованиям серийного стандарта, и пригодный для дальнейшей эксплуатации в течение установленного межремонтного ресурса. — an engine which has been repaired or reconditioned to а standard rendering it eligible for the complete overhaul life agreed by the national authority.
    - с внешним смесеобразованием (пд)carburetor engine
    двигатель внутреннего сгорания, у которого горючая смесь образуется вне рабочего цилиндра. — an engine in which the fuel/air mixture is formed in the carburetor.
    - с внутренним смесеобразованиемfuel-injection engine
    двигатель, у которого горючая смесь образуется внутри рабочего цилиндра. — an engine in which fuel is directly injected into the cylinders.
    - с водяным охлаждением (пд)water-cooled engine
    - с высокой степенью сжатияhigh-compression engine
    - с нагнетателем (пд)supercharged engine
    - с наддувом (пд) с осевым компрессором (пд)supercharged engine axial-flom turbine engine
    - с передним расположением вентилятораfront fan turbine engine
    - с противоточной камерой сгорания (гтд)reverse-flow turbine engine
    - с редукторомengine with reduction gear
    - с форсажной камерой (гтд). двигатель с дополнительным сжиганием топлива в специальной камере за турбиной — engine with afterburner, afterburning engine, reheat(ed) engine, engine with thrust augmentor
    - с форсированной (взлетной) мощностьюengine with augmented (takeoff) power rating
    - с центробежным компрессором (гтд)radial-flow turbine engine
    -, серийный — series engine
    двигатель, изготовляемый в серийном производстве и соответствующий опытному двигателю, принятому при государственных испытаниях для серийного производства. — an engine essentially identiin design, in materials, and in methods of construction, with one which has been approved previously.
    - со свободной турбинойfree-luroine engine
    двигатель с двумя турбинами, валы которых кинематически не связаны. одна из турбин обычно служит для привода компрессора, а другая используется для передачи полезной работы потребителю, например, воздушному (или несущему) винту. — the engine with two turbines whose shafts are not mechanically coupled. one turbine drives the compressor, and the other free turbine drives the propeller or rotor.
    - следящей системы по внутреннему крену (гироплатформы)inner roll gimbal servomotor
    - следящей системы по наружному крену (гироплатформы)outer roll gimbal servomotor
    - следящей системы по курсу (гироплатформы)azimuth gimbal servomotor
    - следящей системы по тангажу (гироплатформы)pitch gimbal servomotor
    -, собственно — engine itself
    -, средний (рис. 44) — center engine
    - стабилизации гироплатформы — stable platform-stabilization servomotor/servo/
    -, стартовый (работающий при взлете) — booster
    -, стартовый твердотопливный — solid propellant booster
    -, трехкаскадный, турбореактивный, с передним вентилятором — three-rotor /triple-spool, triple shaft/ front fan turbo-jet engine
    -, турбовентиляторный — turbofan engine
    двухконтурный турбореактивный двигатель, в котором часть воздуха выбрасывается за первыми ступенями компрессора низкого давления, а остальная часть воздуха за кнд поступает в основной контур с камерами сгорания. — in the turbofan engine a part of the air bypassed and exhausted to atmosphere after the first (two) stages of lp compressor. about half of the thrust is produced by the fan exhaust.
    -, турбовентиляторный (с дожиганием в вентиляторном контуре) — duct-burning turbofan engine
    -, турбовинтовентиляторный — (turbo) propfan engine, unducted fan engine (ufe)
    -, турбовинтовой (твд) — turboprop engine
    газотурбинный двигатель, в котором тепло превращается в кинетическую энергию реактивной струи и в механическую работу на валу двигателя, которая используется для вращения воздушного винта. — а turboprop engine is a turbine engine driving the propeller and developing an additional propulsive thrust by reaction to ejection of combustion products.
    -, "турбовинтовой" (вертолетный, с отбором мощности на вал) — turboshaft engine
    -, турбовинтовой, с толкающим винтом — pusher-turboprop engine
    -, турбопрямоточный — turbo/ram jet engine
    комбинация из турбореактивного (до м-з) и прямоточного (для больших чисел м). — combines а turbo-jet engine (for speeds up to mach 3) and ram jet engine for higher mach numbers.
    -,турбо-ракетный — turbo-rocket engine
    аналог турбопрямоточному двигателю с автономным кислородным питанием, — а turbo/ram jet engine with its own oxygen to provide combustion.
    -, турбореактивный — turbojet engine
    газотурбинный двигатель (с приводом компрессора от турбин), в котором тепло превращается только в кинетическую энергию реактивной струи. — a jet engine incorporating a turbine-driven air compressor to take in and compress the air for the combustion of fuel, the gases of combustion being used both to rotate the turbine and to create a thrust-producing jet.
    -, установленный в мотогондоле — nacelle-mounted engine
    -, установленный в подвесной мотогондоле — pod engine
    -, четырехтактный (поршневой — four-cycle engine
    за два оборота коленчатого вала происходит четыре хода поршня в каждом цилиндре, по одному такту на ход. такт 1 - впуск всасывание рабочей смеси в цилиндр), такт 2 - матке рабочей смеси, такт 3 - рабочий ход (зажигание смеси), такт 4 - выхлоп (выпуск отработанных газов из цилиндра в атмосферу) — a common type of engine which requires two revolutions of the crankshaft (four strokes of the piston) to complete the four events of (1) admission of or forcing the charged mixture of combustible gas into the cylinder, (2) compression of the charge, (3) ignition and burning of the charge, which develops pressure (power) acting on the piston and (4) exhaust or expulsion of the charge from the cylinder.
    -, шаговой (эл.) — step-servo motor
    -, электрический — electric motor
    устройство, преобразующее электрическую энергию во вращательное механическое движение. — device which converts electrical energy into rotating mechanical energy.
    - (-) энергоузел, газотурбинный (ггдэ) — turbine starter /auxiliary power unit, starter/ apu
    для запуска основн. двигателей, хол. прокрутки (стартерный режим) и привода агрегатов самолета при неработающих двигателях (режим энергоузла), имеет свой электростартер.
    в зоне д. — in the region of the engine
    выбег д. — engine run-down
    гонка д. — engine run
    данные д. — engine data
    заливка д. (пд перед запуском) — engine priming
    замена д. — engine replacement /change/
    запуск д. — engine start
    испытание д. — engine test
    мощность д. — engine power
    на входе в д. — at /in/ inlet to the engine
    обороты д. — engine speed /rpm, rpm/
    опробование д. — engine ground test
    опробование д. в полете — in-flight engine test
    опробование д. на земле — engine ground test
    останов д. (выключение) — engine shutdown
    остановка д. (отказ) — engine failure
    остановка д. (выбег) — run down
    остановка д. вслествие недостатка масла (топлива) — engine failure due to oil (fuel) starvation
    отказ д. — engine failure
    перебои в работе д. — rough engine operation
    подогрев д. — engine heating
    проба д. (на земле) — engine ground test
    прогрев д. — engine warm-up
    прокрутка д. (холодная) — engine cranking /motoring/
    работа д. — engine operation
    разгон д. — engine acceleration
    стоянка д. (период, в течение которого двигатель не работает) — engine shutdown. one hundred starts must be made of which 25 starts must be preceded by at least a two-hour engine shutdown.
    тряска д. — engine vibration
    тяга д. — engine thrust
    установка д. — engine installation
    шум д. — engine noise
    вывешивать д. с помощью лебедки — support weight of the engine by a hoist
    выводить д. на требуемые обороты % — accelerate the engine to a required speed of %
    выключать д. — shut down the engine
    глушить д. — shut down the engine
    гонять д. — run the engine
    заливать д. (пд) — prim the engine
    заменять д. — replace the engine
    запускать д. — start the engine
    запускать д. в воздухе — (re)start the engine
    испытывать д. — test the engine
    опробовать д. на земле — ground test the engine
    останавливать д. — shut down the engine
    подвешивать д. — mount the engine
    поднимать д. подъемником — hoist the engine
    подогревать д. — heat the engine
    проворачивать д. на... оборотов — turn the engine... revolutions
    прогревать д. (на оборотах...%) — warm up the engine (at a speed of... %)
    продопжать полет на (двух) д. — continue flight on (two) engines
    разгоняться на одном д. — accelerate with one engine operating
    разгоняться при неработающем критическом д. — accelerate with the critical епgine inoperative
    сбавлять (убирать) обороты (работающего) д. — decelerate the engine
    увеличивать обороты (работающего) д. — accelerate the engine
    устанавливать д. — install the engine

    Русско-английский сборник авиационно-технических терминов > двигатель

  • 14 длительный допустимый ток

    1. current-carrying capacity
    2. continuous current-carrying capacity
    3. continuous current
    4. ampacity (US)

     

    (длительный) допустимый ток
    Максимальное значение электрического тока, который может протекать длительно по проводнику, устройству или аппарату при определенных условиях без превышения определенного значения их температуры в установившемся режиме
    [ ГОСТ Р МЭК 60050-826-2009]

    Этот ток обозначают IZ
    [ ГОСТ Р 50571. 1-2009 ( МЭК 60364-1: 2005)]

    EN

    (continuous) current-carrying capacity
    ampacity (US)
    maximum value of electric current which can be carried continuously by a conductor, a device or an apparatus, under specified conditions without its steady-state temperature exceeding a specified value
    [IEV number 826-11-13]

    ampacity
    The current in amperes that a conductor can carry continuously under the conditions of use without exceeding its temperature rating.
    [National Electrical Cod]

    FR

    courant (permanent) admissible, m
    valeur maximale du courant électrique qui peut parcourir en permanence, un conducteur, un dispositif ou un appareil, sans que sa température de régime permanent, dans des conditions données, soit supérieure à la valeur spécifiée
    [IEV number 826-11-13]

    Ampacity, the term is defined as the maximum amount of current a cable can carry before sustaining immediate or progressive deterioration. Also described as current rating or current-carrying capacity, is the RMS electric current which a device can continuously carry while remaining within its temperature rating. The ampacity of a cable depends on:

    • its insulation temperature rating;
    • conductor electrical properties for current;
    • frequency, in the case of alternating currents;
    • ability to dissipate heat, which depends on cable geometry and its surroundings;
    • ambient temperature.

    Electric wires have some resistance, and electric current flowing through them causes voltage drop and power dissipation, which heats the cable. Copper or aluminum can conduct a large amount of current before melting, but long before the conductors melt, their insulation would be damaged by the heat.

    The ampacity for a power cable is thus based on physical and electrical properties of the material & construction of the conductor and of its insulation, ambient temperature, and environmental conditions adjacent to the cable. Having a large overall surface area may dissipate heat well if the environment can absorb the heat.

    In a long run of cable, different conditions govern, and installation regulations normally specify that the most severe condition along the run governs the cable's rating. Cables run in wet or oily locations may carry a lower temperature rating than in a dry installation. Derating is necessary for multiple circuits in close proximity. When multiple cables are near, each contributes heat to the others and diminishes the amount of cooling air that can flow past the individual cables. The overall ampacity of the insulated conductors in a bundle of more than 3 must be derated, whether in a raceway or cable. Usually the de-rating factor is tabulated in a nation's wiring regulations.

    Depending on the type of insulating material, common maximum allowable temperatures at the surface of the conductor are 60, 75 and 90 degrees Celsius, often with an ambient air temperature of 30°C. In the U.S., 105°C is allowed with ambient of 40°C, for larger power cables, especially those operating at more than 2 kV. Likewise, specific insulations are rated 150, 200 or 250°C.

    The allowed current in cables generally needs to be decreased (derated) when the cable is covered with fireproofing material.

    For example, the United States National Electric Code, Table 310-16, specifies that up to three 8 AWG copper wires having a common insulating material (THWN) in a raceway, cable, or direct burial has an ampacity of 50 A when the ambient air is 30°C, the conductor surface temperature allowed to be 75°C. A single insulated conductor in air has 70 A rating.

    Ampacity rating is normally for continuous current, and short periods of overcurrent occur without harm in most cabling systems. The acceptable magnitude and duration of overcurrent is a more complex topic than ampacity.

    When designing an electrical system, one will normally need to know the current rating for the following:

    Some devices are limited by power rating, and when this power rating occurs below their current limit, it is not necessary to know the current limit to design a system. A common example of this is lightbulb holders.

    [http://en.wikipedia.org/wiki/Ampacity]

    Тематики

    • электротехника, основные понятия

    Синонимы

    EN

    DE

    • Dauerstrombelastbarkeit, f
    • Strombelastbarkeit, f

    FR

    • courant admissible, m
    • courant permanent admissible, m

    Русско-английский словарь нормативно-технической терминологии > длительный допустимый ток

  • 15 модульный центр обработки данных (ЦОД)

    1. modular data center

     

    модульный центр обработки данных (ЦОД)
    -
    [Интент]

    Параллельные тексты EN-RU

    [ http://loosebolts.wordpress.com/2008/12/02/our-vision-for-generation-4-modular-data-centers-one-way-of-getting-it-just-right/]

    [ http://dcnt.ru/?p=9299#more-9299]

    Data Centers are a hot topic these days. No matter where you look, this once obscure aspect of infrastructure is getting a lot of attention. For years, there have been cost pressures on IT operations and this, when the need for modern capacity is greater than ever, has thrust data centers into the spotlight. Server and rack density continues to rise, placing DC professionals and businesses in tighter and tougher situations while they struggle to manage their IT environments. And now hyper-scale cloud infrastructure is taking traditional technologies to limits never explored before and focusing the imagination of the IT industry on new possibilities.

    В настоящее время центры обработки данных являются широко обсуждаемой темой. Куда ни посмотришь, этот некогда малоизвестный аспект инфраструктуры привлекает все больше внимания. Годами ИТ-отделы испытывали нехватку средств и это выдвинуло ЦОДы в центр внимания, в то время, когда необходимость в современных ЦОДах стала как никогда высокой. Плотность серверов и стоек продолжают расти, все больше усложняя ситуацию для специалистов в области охлаждения и организаций в их попытках управлять своими ИТ-средами. И теперь гипермасштабируемая облачная инфраструктура подвергает традиционные технологии невиданным ранее нагрузкам, и заставляет ИТ-индустрию искать новые возможности.

    At Microsoft, we have focused a lot of thought and research around how to best operate and maintain our global infrastructure and we want to share those learnings. While obviously there are some aspects that we keep to ourselves, we have shared how we operate facilities daily, our technologies and methodologies, and, most importantly, how we monitor and manage our facilities. Whether it’s speaking at industry events, inviting customers to our “Microsoft data center conferences” held in our data centers, or through other media like blogging and white papers, we believe sharing best practices is paramount and will drive the industry forward. So in that vein, we have some interesting news to share.

    В компании MicroSoft уделяют большое внимание изучению наилучших методов эксплуатации и технического обслуживания своей глобальной инфраструктуры и делятся результатами своих исследований. И хотя мы, конечно, не раскрываем некоторые аспекты своих исследований, мы делимся повседневным опытом эксплуатации дата-центров, своими технологиями и методологиями и, что важнее всего, методами контроля и управления своими объектами. Будь то доклады на отраслевых событиях, приглашение клиентов на наши конференции, которые посвящены центрам обработки данных MicroSoft, и проводятся в этих самых дата-центрах, или использование других средств, например, блоги и спецификации, мы уверены, что обмен передовым опытом имеет первостепенное значение и будет продвигать отрасль вперед.

    Today we are sharing our Generation 4 Modular Data Center plan. This is our vision and will be the foundation of our cloud data center infrastructure in the next five years. We believe it is one of the most revolutionary changes to happen to data centers in the last 30 years. Joining me, in writing this blog are Daniel Costello, my director of Data Center Research and Engineering and Christian Belady, principal power and cooling architect. I feel their voices will add significant value to driving understanding around the many benefits included in this new design paradigm.

    Сейчас мы хотим поделиться своим планом модульного дата-центра четвертого поколения. Это наше видение и оно будет основанием для инфраструктуры наших облачных дата-центров в ближайшие пять лет. Мы считаем, что это одно из самых революционных изменений в дата-центрах за последние 30 лет. Вместе со мной в написании этого блога участвовали Дэниел Костелло, директор по исследованиям и инжинирингу дата-центров, и Кристиан Белади, главный архитектор систем энергоснабжения и охлаждения. Мне кажется, что их авторитет придаст больше веса большому количеству преимуществ, включенных в эту новую парадигму проектирования.

    Our “Gen 4” modular data centers will take the flexibility of containerized servers—like those in our Chicago data center—and apply it across the entire facility. So what do we mean by modular? Think of it like “building blocks”, where the data center will be composed of modular units of prefabricated mechanical, electrical, security components, etc., in addition to containerized servers.

    Was there a key driver for the Generation 4 Data Center?

    Наши модульные дата-центры “Gen 4” будут гибкими с контейнерами серверов – как серверы в нашем чикагском дата-центре. И гибкость будет применяться ко всему ЦОД. Итак, что мы подразумеваем под модульностью? Мы думаем о ней как о “строительных блоках”, где дата-центр будет состоять из модульных блоков изготовленных в заводских условиях электрических систем и систем охлаждения, а также систем безопасности и т.п., в дополнение к контейнеризованным серверам.
    Был ли ключевой стимул для разработки дата-центра четвертого поколения?


    If we were to summarize the promise of our Gen 4 design into a single sentence it would be something like this: “A highly modular, scalable, efficient, just-in-time data center capacity program that can be delivered anywhere in the world very quickly and cheaply, while allowing for continued growth as required.” Sounds too good to be true, doesn’t it? Well, keep in mind that these concepts have been in initial development and prototyping for over a year and are based on cumulative knowledge of previous facility generations and the advances we have made since we began our investments in earnest on this new design.

    Если бы нам нужно было обобщить достоинства нашего проекта Gen 4 в одном предложении, это выглядело бы следующим образом: “Центр обработки данных с высоким уровнем модульности, расширяемости, и энергетической эффективности, а также возможностью постоянного расширения, в случае необходимости, который можно очень быстро и дешево развертывать в любом месте мира”. Звучит слишком хорошо для того чтобы быть правдой, не так ли? Ну, не забывайте, что эти концепции находились в процессе начальной разработки и создания опытного образца в течение более одного года и основываются на опыте, накопленном в ходе развития предыдущих поколений ЦОД, а также успехах, сделанных нами со времени, когда мы начали вкладывать серьезные средства в этот новый проект.

    One of the biggest challenges we’ve had at Microsoft is something Mike likes to call the ‘Goldilock’s Problem’. In a nutshell, the problem can be stated as:

    The worst thing we can do in delivering facilities for the business is not have enough capacity online, thus limiting the growth of our products and services.

    Одну из самых больших проблем, с которыми приходилось сталкиваться Майкрософт, Майк любит называть ‘Проблемой Лютика’. Вкратце, эту проблему можно выразить следующим образом:

    Самое худшее, что может быть при строительстве ЦОД для бизнеса, это не располагать достаточными производственными мощностями, и тем самым ограничивать рост наших продуктов и сервисов.

    The second worst thing we can do in delivering facilities for the business is to have too much capacity online.

    А вторым самым худшим моментом в этой сфере может слишком большое количество производственных мощностей.

    This has led to a focus on smart, intelligent growth for the business — refining our overall demand picture. It can’t be too hot. It can’t be too cold. It has to be ‘Just Right!’ The capital dollars of investment are too large to make without long term planning. As we struggled to master these interesting challenges, we had to ensure that our technological plan also included solutions for the business and operational challenges we faced as well.
    So let’s take a high level look at our Generation 4 design

    Это заставило нас сосредоточиваться на интеллектуальном росте для бизнеса — refining our overall demand picture. Это не должно быть слишком горячим. И это не должно быть слишком холодным. Это должно быть ‘как раз, таким как надо!’ Нельзя делать такие большие капиталовложения без долгосрочного планирования. Пока мы старались решить эти интересные проблемы, мы должны были гарантировать, что наш технологический план будет также включать решения для коммерческих и эксплуатационных проблем, с которыми нам также приходилось сталкиваться.
    Давайте рассмотрим наш проект дата-центра четвертого поколения

    Are you ready for some great visuals? Check out this video at Soapbox. Click here for the Microsoft 4th Gen Video.

    It’s a concept video that came out of my Data Center Research and Engineering team, under Daniel Costello, that will give you a view into what we think is the future.

    From a configuration, construct-ability and time to market perspective, our primary goals and objectives are to modularize the whole data center. Not just the server side (like the Chicago facility), but the mechanical and electrical space as well. This means using the same kind of parts in pre-manufactured modules, the ability to use containers, skids, or rack-based deployments and the ability to tailor the Redundancy and Reliability requirements to the application at a very specific level.


    Посмотрите это видео, перейдите по ссылке для просмотра видео о Microsoft 4th Gen:

    Это концептуальное видео, созданное командой отдела Data Center Research and Engineering, возглавляемого Дэниелом Костелло, которое даст вам наше представление о будущем.

    С точки зрения конфигурации, строительной технологичности и времени вывода на рынок, нашими главными целями и задачами агрегатирование всего дата-центра. Не только серверную часть, как дата-центр в Чикаго, но также системы охлаждения и электрические системы. Это означает применение деталей одного типа в сборных модулях, возможность использования контейнеров, салазок, или стоечных систем, а также возможность подстраивать требования избыточности и надежности для данного приложения на очень специфичном уровне.

    Our goals from a cost perspective were simple in concept but tough to deliver. First and foremost, we had to reduce the capital cost per critical Mega Watt by the class of use. Some applications can run with N-level redundancy in the infrastructure, others require a little more infrastructure for support. These different classes of infrastructure requirements meant that optimizing for all cost classes was paramount. At Microsoft, we are not a one trick pony and have many Online products and services (240+) that require different levels of operational support. We understand that and ensured that we addressed it in our design which will allow us to reduce capital costs by 20%-40% or greater depending upon class.


    Нашими целями в области затрат были концептуально простыми, но трудно реализуемыми. В первую очередь мы должны были снизить капитальные затраты в пересчете на один мегаватт, в зависимости от класса резервирования. Некоторые приложения могут вполне работать на базе инфраструктуры с резервированием на уровне N, то есть без резервирования, а для работы других приложений требуется больше инфраструктуры. Эти разные классы требований инфраструктуры подразумевали, что оптимизация всех классов затрат имеет преобладающее значение. В Майкрософт мы не ограничиваемся одним решением и располагаем большим количеством интерактивных продуктов и сервисов (240+), которым требуются разные уровни эксплуатационной поддержки. Мы понимаем это, и учитываем это в своем проекте, который позволит нам сокращать капитальные затраты на 20%-40% или более в зависимости от класса.

    For example, non-critical or geo redundant applications have low hardware reliability requirements on a location basis. As a result, Gen 4 can be configured to provide stripped down, low-cost infrastructure with little or no redundancy and/or temperature control. Let’s say an Online service team decides that due to the dramatically lower cost, they will simply use uncontrolled outside air with temperatures ranging 10-35 C and 20-80% RH. The reality is we are already spec-ing this for all of our servers today and working with server vendors to broaden that range even further as Gen 4 becomes a reality. For this class of infrastructure, we eliminate generators, chillers, UPSs, and possibly lower costs relative to traditional infrastructure.

    Например, некритичные или гео-избыточные системы имеют низкие требования к аппаратной надежности на основе местоположения. В результате этого, Gen 4 можно конфигурировать для упрощенной, недорогой инфраструктуры с низким уровнем (или вообще без резервирования) резервирования и / или температурного контроля. Скажем, команда интерактивного сервиса решает, что, в связи с намного меньшими затратами, они будут просто использовать некондиционированный наружный воздух с температурой 10-35°C и влажностью 20-80% RH. В реальности мы уже сегодня предъявляем эти требования к своим серверам и работаем с поставщиками серверов над еще большим расширением диапазона температур, так как наш модуль и подход Gen 4 становится реальностью. Для подобного класса инфраструктуры мы удаляем генераторы, чиллеры, ИБП, и, возможно, будем предлагать более низкие затраты, по сравнению с традиционной инфраструктурой.

    Applications that demand higher level of redundancy or temperature control will use configurations of Gen 4 to meet those needs, however, they will also cost more (but still less than traditional data centers). We see this cost difference driving engineering behavioral change in that we predict more applications will drive towards Geo redundancy to lower costs.

    Системы, которым требуется более высокий уровень резервирования или температурного контроля, будут использовать конфигурации Gen 4, отвечающие этим требованиям, однако, они будут также стоить больше. Но все равно они будут стоить меньше, чем традиционные дата-центры. Мы предвидим, что эти различия в затратах будут вызывать изменения в методах инжиниринга, и по нашим прогнозам, это будет выражаться в переходе все большего числа систем на гео-избыточность и меньшие затраты.

    Another cool thing about Gen 4 is that it allows us to deploy capacity when our demand dictates it. Once finalized, we will no longer need to make large upfront investments. Imagine driving capital costs more closely in-line with actual demand, thus greatly reducing time-to-market and adding the capacity Online inherent in the design. Also reduced is the amount of construction labor required to put these “building blocks” together. Since the entire platform requires pre-manufacture of its core components, on-site construction costs are lowered. This allows us to maximize our return on invested capital.

    Еще одно достоинство Gen 4 состоит в том, что он позволяет нам разворачивать дополнительные мощности, когда нам это необходимо. Как только мы закончим проект, нам больше не нужно будет делать большие начальные капиталовложения. Представьте себе возможность более точного согласования капитальных затрат с реальными требованиями, и тем самым значительного снижения времени вывода на рынок и интерактивного добавления мощностей, предусматриваемого проектом. Также снижен объем строительных работ, требуемых для сборки этих “строительных блоков”. Поскольку вся платформа требует предварительного изготовления ее базовых компонентов, затраты на сборку также снижены. Это позволит нам увеличить до максимума окупаемость своих капиталовложений.
    Мы все подвергаем сомнению

    In our design process, we questioned everything. You may notice there is no roof and some might be uncomfortable with this. We explored the need of one and throughout our research we got some surprising (positive) results that showed one wasn’t needed.

    В своем процессе проектирования мы все подвергаем сомнению. Вы, наверное, обратили внимание на отсутствие крыши, и некоторым специалистам это могло не понравиться. Мы изучили необходимость в крыше и в ходе своих исследований получили удивительные результаты, которые показали, что крыша не нужна.
    Серийное производство дата центров


    In short, we are striving to bring Henry Ford’s Model T factory to the data center. http://en.wikipedia.org/wiki/Henry_Ford#Model_T. Gen 4 will move data centers from a custom design and build model to a commoditized manufacturing approach. We intend to have our components built in factories and then assemble them in one location (the data center site) very quickly. Think about how a computer, car or plane is built today. Components are manufactured by different companies all over the world to a predefined spec and then integrated in one location based on demands and feature requirements. And just like Henry Ford’s assembly line drove the cost of building and the time-to-market down dramatically for the automobile industry, we expect Gen 4 to do the same for data centers. Everything will be pre-manufactured and assembled on the pad.

    Мы хотим применить модель автомобильной фабрики Генри Форда к дата-центру. Проект Gen 4 будет способствовать переходу от модели специализированного проектирования и строительства к товарно-производственному, серийному подходу. Мы намерены изготавливать свои компоненты на заводах, а затем очень быстро собирать их в одном месте, в месте строительства дата-центра. Подумайте о том, как сегодня изготавливается компьютер, автомобиль или самолет. Компоненты изготавливаются по заранее определенным спецификациям разными компаниями во всем мире, затем собираются в одном месте на основе спроса и требуемых характеристик. И точно так же как сборочный конвейер Генри Форда привел к значительному уменьшению затрат на производство и времени вывода на рынок в автомобильной промышленности, мы надеемся, что Gen 4 сделает то же самое для дата-центров. Все будет предварительно изготавливаться и собираться на месте.
    Невероятно энергоэффективный ЦОД


    And did we mention that this platform will be, overall, incredibly energy efficient? From a total energy perspective not only will we have remarkable PUE values, but the total cost of energy going into the facility will be greatly reduced as well. How much energy goes into making concrete? Will we need as much of it? How much energy goes into the fuel of the construction vehicles? This will also be greatly reduced! A key driver is our goal to achieve an average PUE at or below 1.125 by 2012 across our data centers. More than that, we are on a mission to reduce the overall amount of copper and water used in these facilities. We believe these will be the next areas of industry attention when and if the energy problem is solved. So we are asking today…“how can we build a data center with less building”?

    А мы упоминали, что эта платформа будет, в общем, невероятно энергоэффективной? С точки зрения общей энергии, мы получим не только поразительные значения PUE, но общая стоимость энергии, затраченной на объект будет также значительно снижена. Сколько энергии идет на производство бетона? Нам нужно будет столько энергии? Сколько энергии идет на питание инженерных строительных машин? Это тоже будет значительно снижено! Главным стимулом является достижение среднего PUE не больше 1.125 для всех наших дата-центров к 2012 году. Более того, у нас есть задача сокращения общего количества меди и воды в дата-центрах. Мы думаем, что эти задачи станут следующей заботой отрасли после того как будет решена энергетическая проблема. Итак, сегодня мы спрашиваем себя…“как можно построить дата-центр с меньшим объемом строительных работ”?
    Строительство дата центров без чиллеров

    We have talked openly and publicly about building chiller-less data centers and running our facilities using aggressive outside economization. Our sincerest hope is that Gen 4 will completely eliminate the use of water. Today’s data centers use massive amounts of water and we see water as the next scarce resource and have decided to take a proactive stance on making water conservation part of our plan.

    Мы открыто и публично говорили о строительстве дата-центров без чиллеров и активном использовании в наших центрах обработки данных технологий свободного охлаждения или фрикулинга. Мы искренне надеемся, что Gen 4 позволит полностью отказаться от использования воды. Современные дата-центры расходуют большие объемы воды и так как мы считаем воду следующим редким ресурсом, мы решили принять упреждающие меры и включить экономию воды в свой план.

    By sharing this with the industry, we believe everyone can benefit from our methodology. While this concept and approach may be intimidating (or downright frightening) to some in the industry, disclosure ultimately is better for all of us.

    Делясь этим опытом с отраслью, мы считаем, что каждый сможет извлечь выгоду из нашей методологией. Хотя эта концепция и подход могут показаться пугающими (или откровенно страшными) для некоторых отраслевых специалистов, раскрывая свои планы мы, в конечном счете, делаем лучше для всех нас.

    Gen 4 design (even more than just containers), could reduce the ‘religious’ debates in our industry. With the central spine infrastructure in place, containers or pre-manufactured server halls can be either AC or DC, air-side economized or water-side economized, or not economized at all (though the sanity of that might be questioned). Gen 4 will allow us to decommission, repair and upgrade quickly because everything is modular. No longer will we be governed by the initial decisions made when constructing the facility. We will have almost unlimited use and re-use of the facility and site. We will also be able to use power in an ultra-fluid fashion moving load from critical to non-critical as use and capacity requirements dictate.

    Проект Gen 4 позволит уменьшить ‘религиозные’ споры в нашей отрасли. Располагая базовой инфраструктурой, контейнеры или сборные серверные могут оборудоваться системами переменного или постоянного тока, воздушными или водяными экономайзерами, или вообще не использовать экономайзеры. Хотя можно подвергать сомнению разумность такого решения. Gen 4 позволит нам быстро выполнять работы по выводу из эксплуатации, ремонту и модернизации, поскольку все будет модульным. Мы больше не будем руководствоваться начальными решениями, принятыми во время строительства дата-центра. Мы сможем использовать этот дата-центр и инфраструктуру в течение почти неограниченного периода времени. Мы также сможем применять сверхгибкие методы использования электрической энергии, переводя оборудование в режимы критической или некритической нагрузки в соответствии с требуемой мощностью.
    Gen 4 – это стандартная платформа

    Finally, we believe this is a big game changer. Gen 4 will provide a standard platform that our industry can innovate around. For example, all modules in our Gen 4 will have common interfaces clearly defined by our specs and any vendor that meets these specifications will be able to plug into our infrastructure. Whether you are a computer vendor, UPS vendor, generator vendor, etc., you will be able to plug and play into our infrastructure. This means we can also source anyone, anywhere on the globe to minimize costs and maximize performance. We want to help motivate the industry to further innovate—with innovations from which everyone can reap the benefits.

    Наконец, мы уверены, что это будет фактором, который значительно изменит ситуацию. Gen 4 будет представлять собой стандартную платформу, которую отрасль сможет обновлять. Например, все модули в нашем Gen 4 будут иметь общепринятые интерфейсы, четко определяемые нашими спецификациями, и оборудование любого поставщика, которое отвечает этим спецификациям можно будет включать в нашу инфраструктуру. Независимо от того производите вы компьютеры, ИБП, генераторы и т.п., вы сможете включать свое оборудование нашу инфраструктуру. Это означает, что мы также сможем обеспечивать всех, в любом месте земного шара, тем самым сводя до минимума затраты и максимальной увеличивая производительность. Мы хотим создать в отрасли мотивацию для дальнейших инноваций – инноваций, от которых каждый сможет получать выгоду.
    Главные характеристики дата-центров четвертого поколения Gen4

    To summarize, the key characteristics of our Generation 4 data centers are:

    Scalable
    Plug-and-play spine infrastructure
    Factory pre-assembled: Pre-Assembled Containers (PACs) & Pre-Manufactured Buildings (PMBs)
    Rapid deployment
    De-mountable
    Reduce TTM
    Reduced construction
    Sustainable measures

    Ниже приведены главные характеристики дата-центров четвертого поколения Gen 4:

    Расширяемость;
    Готовая к использованию базовая инфраструктура;
    Изготовление в заводских условиях: сборные контейнеры (PAC) и сборные здания (PMB);
    Быстрота развертывания;
    Возможность демонтажа;
    Снижение времени вывода на рынок (TTM);
    Сокращение сроков строительства;
    Экологичность;

    Map applications to DC Class

    We hope you join us on this incredible journey of change and innovation!

    Long hours of research and engineering time are invested into this process. There are still some long days and nights ahead, but the vision is clear. Rest assured however, that we as refine Generation 4, the team will soon be looking to Generation 5 (even if it is a bit farther out). There is always room to get better.


    Использование систем электропитания постоянного тока.

    Мы надеемся, что вы присоединитесь к нам в этом невероятном путешествии по миру изменений и инноваций!

    На этот проект уже потрачены долгие часы исследований и проектирования. И еще предстоит потратить много дней и ночей, но мы имеем четкое представление о конечной цели. Однако будьте уверены, что как только мы доведем до конца проект модульного дата-центра четвертого поколения, мы вскоре начнем думать о проекте дата-центра пятого поколения. Всегда есть возможность для улучшений.

    So if you happen to come across Goldilocks in the forest, and you are curious as to why she is smiling you will know that she feels very good about getting very close to ‘JUST RIGHT’.

    Generations of Evolution – some background on our data center designs

    Так что, если вы встретите в лесу девочку по имени Лютик, и вам станет любопытно, почему она улыбается, вы будете знать, что она очень довольна тем, что очень близко подошла к ‘ОПИМАЛЬНОМУ РЕШЕНИЮ’.
    Поколения эволюции – история развития наших дата-центров

    We thought you might be interested in understanding what happened in the first three generations of our data center designs. When Ray Ozzie wrote his Software plus Services memo it posed a very interesting challenge to us. The winds of change were at ‘tornado’ proportions. That “plus Services” tag had some significant (and unstated) challenges inherent to it. The first was that Microsoft was going to evolve even further into an operations company. While we had been running large scale Internet services since 1995, this development lead us to an entirely new level. Additionally, these “services” would span across both Internet and Enterprise businesses. To those of you who have to operate “stuff”, you know that these are two very different worlds in operational models and challenges. It also meant that, to achieve the same level of reliability and performance required our infrastructure was going to have to scale globally and in a significant way.

    Мы подумали, что может быть вам будет интересно узнать историю первых трех поколений наших центров обработки данных. Когда Рэй Оззи написал свою памятную записку Software plus Services, он поставил перед нами очень интересную задачу. Ветра перемен двигались с ураганной скоростью. Это окончание “plus Services” скрывало в себе какие-то значительные и неопределенные задачи. Первая заключалась в том, что Майкрософт собиралась в еще большей степени стать операционной компанией. Несмотря на то, что мы управляли большими интернет-сервисами, начиная с 1995 г., эта разработка подняла нас на абсолютно новый уровень. Кроме того, эти “сервисы” охватывали интернет-компании и корпорации. Тем, кому приходится всем этим управлять, известно, что есть два очень разных мира в области операционных моделей и задач. Это также означало, что для достижения такого же уровня надежности и производительности требовалось, чтобы наша инфраструктура располагала значительными возможностями расширения в глобальных масштабах.

    It was that intense atmosphere of change that we first started re-evaluating data center technology and processes in general and our ideas began to reach farther than what was accepted by the industry at large. This was the era of Generation 1. As we look at where most of the world’s data centers are today (and where our facilities were), it represented all the known learning and design requirements that had been in place since IBM built the first purpose-built computer room. These facilities focused more around uptime, reliability and redundancy. Big infrastructure was held accountable to solve all potential environmental shortfalls. This is where the majority of infrastructure in the industry still is today.

    Именно в этой атмосфере серьезных изменений мы впервые начали переоценку ЦОД-технологий и технологий вообще, и наши идеи начали выходить за пределы общепринятых в отрасли представлений. Это была эпоха ЦОД первого поколения. Когда мы узнали, где сегодня располагается большинство мировых дата-центров и где находятся наши предприятия, это представляло весь опыт и навыки проектирования, накопленные со времени, когда IBM построила первую серверную. В этих ЦОД больше внимания уделялось бесперебойной работе, надежности и резервированию. Большая инфраструктура была призвана решать все потенциальные экологические проблемы. Сегодня большая часть инфраструктуры все еще находится на этом этапе своего развития.

    We soon realized that traditional data centers were quickly becoming outdated. They were not keeping up with the demands of what was happening technologically and environmentally. That’s when we kicked off our Generation 2 design. Gen 2 facilities started taking into account sustainability, energy efficiency, and really looking at the total cost of energy and operations.

    Очень быстро мы поняли, что стандартные дата-центры очень быстро становятся устаревшими. Они не поспевали за темпами изменений технологических и экологических требований. Именно тогда мы стали разрабатывать ЦОД второго поколения. В этих дата-центрах Gen 2 стали принимать во внимание такие факторы как устойчивое развитие, энергетическая эффективность, а также общие энергетические и эксплуатационные.

    No longer did we view data centers just for the upfront capital costs, but we took a hard look at the facility over the course of its life. Our Quincy, Washington and San Antonio, Texas facilities are examples of our Gen 2 data centers where we explored and implemented new ways to lessen the impact on the environment. These facilities are considered two leading industry examples, based on their energy efficiency and ability to run and operate at new levels of scale and performance by leveraging clean hydro power (Quincy) and recycled waste water (San Antonio) to cool the facility during peak cooling months.

    Мы больше не рассматривали дата-центры только с точки зрения начальных капитальных затрат, а внимательно следили за работой ЦОД на протяжении его срока службы. Наши объекты в Куинси, Вашингтоне, и Сан-Антонио, Техас, являются образцами наших ЦОД второго поколения, в которых мы изучали и применяли на практике новые способы снижения воздействия на окружающую среду. Эти объекты считаются двумя ведущими отраслевыми примерами, исходя из их энергетической эффективности и способности работать на новых уровнях производительности, основанных на использовании чистой энергии воды (Куинси) и рециклирования отработанной воды (Сан-Антонио) для охлаждения объекта в самых жарких месяцах.

    As we were delivering our Gen 2 facilities into steel and concrete, our Generation 3 facilities were rapidly driving the evolution of the program. The key concepts for our Gen 3 design are increased modularity and greater concentration around energy efficiency and scale. The Gen 3 facility will be best represented by the Chicago, Illinois facility currently under construction. This facility will seem very foreign compared to the traditional data center concepts most of the industry is comfortable with. In fact, if you ever sit around in our container hanger in Chicago it will look incredibly different from a traditional raised-floor data center. We anticipate this modularization will drive huge efficiencies in terms of cost and operations for our business. We will also introduce significant changes in the environmental systems used to run our facilities. These concepts and processes (where applicable) will help us gain even greater efficiencies in our existing footprint, allowing us to further maximize infrastructure investments.

    Так как наши ЦОД второго поколения строились из стали и бетона, наши центры обработки данных третьего поколения начали их быстро вытеснять. Главными концептуальными особенностями ЦОД третьего поколения Gen 3 являются повышенная модульность и большее внимание к энергетической эффективности и масштабированию. Дата-центры третьего поколения лучше всего представлены объектом, который в настоящее время строится в Чикаго, Иллинойс. Этот ЦОД будет выглядеть очень необычно, по сравнению с общепринятыми в отрасли представлениями о дата-центре. Действительно, если вам когда-либо удастся побывать в нашем контейнерном ангаре в Чикаго, он покажется вам совершенно непохожим на обычный дата-центр с фальшполом. Мы предполагаем, что этот модульный подход будет способствовать значительному повышению эффективности нашего бизнеса в отношении затрат и операций. Мы также внесем существенные изменения в климатические системы, используемые в наших ЦОД. Эти концепции и технологии, если применимо, позволят нам добиться еще большей эффективности наших существующих дата-центров, и тем самым еще больше увеличивать капиталовложения в инфраструктуру.

    This is definitely a journey, not a destination industry. In fact, our Generation 4 design has been under heavy engineering for viability and cost for over a year. While the demand of our commercial growth required us to make investments as we grew, we treated each step in the learning as a process for further innovation in data centers. The design for our future Gen 4 facilities enabled us to make visionary advances that addressed the challenges of building, running, and operating facilities all in one concerted effort.

    Это определенно путешествие, а не конечный пункт назначения. На самом деле, наш проект ЦОД четвертого поколения подвергался серьезным испытаниям на жизнеспособность и затраты на протяжении целого года. Хотя необходимость в коммерческом росте требовала от нас постоянных капиталовложений, мы рассматривали каждый этап своего развития как шаг к будущим инновациям в области дата-центров. Проект наших будущих ЦОД четвертого поколения Gen 4 позволил нам делать фантастические предположения, которые касались задач строительства, управления и эксплуатации объектов как единого упорядоченного процесса.


    Тематики

    Синонимы

    EN

    Русско-английский словарь нормативно-технической терминологии > модульный центр обработки данных (ЦОД)

  • 16 испытание

    assay, examination, test, testing, trial
    * * *
    испыта́ние с.
    1. ( единичный акт) test; особ. мор. trial; ( совокупность действий) testing
    в слу́чае успе́шного результа́та испыта́ний … — if the test is satisfactory …
    выде́рживать испыта́ние — pass [stand] a test
    доводи́ть испыта́ние до разруше́ния (образца́) — carry a test to failure [destruction] (of a specimen)
    доводи́ть испыта́ние до разры́ва образца́ — carry a test to rupture of a specimen
    не пройти́ испыта́ния — fail the test
    объяви́ть (результа́ты) испыта́ния недействи́тельными — invalidate a test
    подверга́ть испыта́нию — test, put to test, try out, subject to [apply] a test
    представля́ть на испыта́ния — present for tests
    проводи́ть испыта́ние — carry out [run] a test
    успе́шно проходи́ть испыта́ние — pass the test to satisfaction
    2. ( в теории вероятностей) trial, run, experiment
    в k-м испыта́нии — in the kth trial
    испыта́ние заверша́ется неуда́чей — a trial fails
    испыта́ние заверша́ется успе́хом — a trial succeeds
    испыта́ние мо́жет име́ть оди́н (и то́лько оди́н) исхо́д — a trial may have one (and only one) outcome
    арбитра́жное испыта́ние — arbitration test
    аттестацио́нные испыта́ния — certification test
    бала́нсовое испыта́ние тепл. — heat losses test; boiler efficiency test
    испыта́ние без нагру́зки — no-load test
    испыта́ние без разруше́ния ( образца) — non-destructive test
    биологи́ческое испыта́ние — biological test
    буксиро́вочное испыта́ние ( в опытовом бассейне) мор.towing test
    испыта́ние в аэродинами́ческой трубе́ — (wind-)tunnel test
    испыта́ние в аэродинами́ческой трубе́ крупномасшта́бной моде́ли — large-scale wind-tunnel test(ing)
    испыта́ние в ва́кууме — vacuum test(ing)
    испыта́ние в непреры́вном режи́ме — continuous test
    испыта́ние в полевы́х усло́виях — field test
    испыта́ние в пото́ке — flow test
    испыта́ние в преры́вистом режи́ме — intermittent test
    испыта́ние в свобо́дном паде́нии — free-fall test(ing)
    испыта́ние в свобо́дном полё́те — free-flight test(ing)
    испыта́ние в солево́м тума́не — salt-mist test
    выборо́чное испыта́ние — random [percent] test
    испыта́ние в эксплуатацио́нных усло́виях — field (service) test
    гаранти́йное испыта́ние — warranty test
    гидравли́ческое испыта́ние (ёмкостей, труб и т. п.) — hydrostatic test
    госуда́рственные испыта́ния — state testing, governmental tests
    испыта́ние грохоче́нием — screen test
    испыта́ние дви́гателя на эффекти́вную тормозну́ю мо́щность — brake horse-power test
    диагности́ческое испыта́ние вчт., элк. — marginal check, marginal test
    диагности́ческое испыта́ние выявля́ет возмо́жные неиспра́вности до их наступле́ния — marginal testing locates defects before they become serious
    диагности́ческое испыта́ние прово́дится в ра́мках регла́ментных рабо́т — marginal testing is a form of preventive maintenance
    динами́ческое испыта́ние
    2. ( в условиях меняющихся параметров) радио, элк. dynamic test, dynamic run
    динамометри́ческое испыта́ние
    1. текст. tensile test
    2. маш. dynamometer test
    дли́тельное испыта́ние — long-run [long-duration, long-time, long-term] test
    дово́дочное испыта́ние — development(al) test
    испыта́ние дождева́нием текст.spray test
    доро́жное испыта́ние — (on-the-)road test
    заводски́е испыта́ния — factory [shop] tests, tests at the manufacturer's works
    испыта́ние запи́ленного образца́ — notch-bar test
    и́мпульсное испыта́ние — impulse test
    и́мпульсное испыта́ние без пробо́я — impulse-withstand [withstand-impulse] test
    инерцио́нное испыта́ние мор. — stopping [stopway] test
    иссле́довательские испыта́ния — investigation tests
    калориметри́ческое испыта́ние — calorimeter test
    климати́ческие испыта́ния — environmental tests
    испыта́ние ко́жи — leather control, leather examination
    колориметри́ческое испыта́ние — colorimetric test
    ко́мплексное испыта́ние — comprehensive test
    контро́льное испыта́ние — (производится на каждом изделии для контроля качества в отличие от типового испытания) routine test; ( поверочное) check test
    испыта́ние краси́теля на вса́сывание волокно́м — dye suction test
    испыта́ние краси́теля на раствори́мость — dye solubility test
    испыта́ние кра́ски на высыха́ние — paint drying test
    испыта́ние кра́ски на истира́ние — paint rub test
    испыта́ние кра́ски на сма́зывание — paint smear test
    кратковре́менное испыта́ние — short-term [short-time] test
    испыта́ние купели́рованием метал.cupel(ling) test
    лаборато́рное испыта́ние — laboratory test
    лё́тное испыта́ние — flight test(ing)
    манё́вренное испыта́ние мор. — manoeuvrability [manoeuvring] trial
    испыта́ние ма́сел на коксу́емость — oil carbonization test
    испыта́ние ма́сел на разжиже́ние — oil dilution test
    испыта́ние материа́лов — material(s) test(ing)
    испыта́ние материа́лов, неразруша́ющее — non-destructive material(s) testing
    испыта́ние материа́лов, огнево́е — test of materials for fire-proofness or for fire-resistance
    испыта́ние материа́лов, разруша́ющее — destructive material(s) testing
    испыта́ние ме́тодом интерференцио́нных поло́с — schlieren test
    испыта́ние ме́тодом модели́рования (на ЭВМ) — simulation test
    испыта́ние ме́тодом торцо́вой зака́лки — end quench test
    испыта́ние ме́тодом (физи́ческого) модели́рования — (physical) model test(ing)
    испыта́ние ме́тодом экстра́кции (портландцеме́нта) — extraction test (on portland cement)
    механи́ческие испыта́ния — mechanical testing
    морехо́дное испыта́ние — seakeeping [seaworthiness] trial
    испыта́ние на адеква́тность (напр. уравнения регрессии) стат. — test for goodness of fit (e. g., of a regression equation)
    испыта́ние на артикуля́цию свз.articulation test
    испыта́ние на баллисти́ческом динамо́метре текст.ballistic test
    испыта́ние на вибропро́чность — vibration-survival test
    испыта́ние на виброусто́йчивость — vibration-resistance test
    испыта́ние на водоотта́лкиваемость текст.water repulsion test
    испыта́ние на возду́шную зака́ливаемость — air-hardenability test
    испыта́ние на воспламеня́емость — flammability test
    испыта́ние на выжива́ние — survival test
    испыта́ние на выно́сливость — endurance test
    испыта́ние на вы́тяжку — cupping test
    испыта́ние на вы́тяжку по Ольсе́ну — Olsen cupping test
    испыта́ние на вы́тяжку по Эриксе́ну — Erichsen cupping test
    испыта́ние на вя́зкость — ( твёрдых материалов) toughness test; ( жидкостей) viscosity test
    испыта́ние на гермети́чность — leakage [tightness] test
    испыта́ние на гидрата́цию — slaking test
    испыта́ние на глубо́кую вы́тяжку — deep-drawing test
    испыта́ние на гнилосто́йкость текст.soil burial test
    испыта́ние на горя́чее круче́ние — hot twist test
    испыта́ние на горя́чий изги́б — hot bend(ing) test
    испыта́ние на горя́чую оса́дку — hot upset test
    испыта́ние на долгове́чность — durability [service-life] test
    испыта́ние надре́занного образца́ — notched-bar [notched-specimen] test
    испыта́ние на жидкотеку́честь — fluidity test
    испыта́ние на заги́б — bend-over test
    испыта́ние на зади́р — galling test
    испыта́ние на замора́живание — freezing test
    испыта́ние на замора́живание и отта́ивание — freeze-thaw test
    испыта́ние на за́пуск холо́дного дви́гателя — cold start test
    назе́мное испыта́ние ав., косм.ground test(ing)
    испыта́ние на изги́б — bend(ing) test
    испыта́ние на изги́б с переги́бом — bending-and-unbending [alternating bending] test
    испыта́ние на изло́м
    1. fracture test
    2. текст. folding test
    испыта́ние на изно́с — wear(ing) test
    испыта́ние на интенси́вность отка́зов — failure-rate test
    испыта́ние на испаря́емость — evaporation test
    испыта́ние на истира́ние — abrasion test
    испыта́ние на истира́ние при смя́тии текст.crease-abrasion test
    испыта́ние на кип кож.boiling (water) test
    испыта́ние на коро́ткое замыка́ние — short-circuit test
    испыта́ние на корро́зию — corrosion test
    испыта́ние на кпд — efficiency test
    испыта́ние на круче́ние — torsion test; twist(ing) test
    испыта́ние на лаборато́рном маке́те элк.breadboard test(ing)
    испыта́ние на лакообразова́ние — lacquer test
    испыта́ние нали́вом мор.floading test
    испыта́ние на ли́пкость кож.tackiness test
    испыта́ние на ло́мкость — friability test
    испыта́ние на ме́сте устано́вки — site test(ing)
    испыта́ние на ме́сте эксплуата́ции — site test(ing)
    испыта́ние на микротвё́рдость — microhardness test
    испыта́ние на многокра́тное растяже́ние текст.repeated stress test
    испыта́ние на моде́ли — model [mock-up, dummy] test
    испыта́ние на морозосто́йкость — freezing [subzero] test
    испыта́ние на нагре́в
    2. ( материалов) heat(ing) test
    испыта́ние на надё́жность — reliability test
    испыта́ние на надры́в — tear test
    испыта́ние на обледене́ние — icing [ice-formation] test
    испыта́ние на обраба́тываемость ре́занием — machinability [machining] test
    испыта́ние на обслу́живание ( жил кабелей) — tinning test
    испыта́ние на огнесто́йкость — ( материалов) fire resistance test; ( тканей) burning test
    испыта́ние на окисля́емость — oxidation test
    испыта́ние на оса́дку — jumping-up [upsetting] test
    испыта́ние на отборто́вку — flanging test
    испыта́ние на отка́з — fault testing
    испыта́ние на перегру́зку — overload test
    испыта́ние на пла́вкость — melting [fusion] test
    испыта́ние на пло́тность (соединений, швов и т. п.) — leak testing
    испыта́ние на повто́рное растяже́ние — repeated tension test
    испыта́ние на поглоще́ние — absorption test
    испыта́ние на ползу́честь — creep test
    испыта́ние на ползу́честь до разры́ва — rupture [stress-rupture, creep-rupture] test
    испыта́ние на по́лный расхо́д то́плива ав.fuel run-out test
    испыта́ние на принуди́тельный отка́з — forced-failure test
    испыта́ние на проги́б — flexure test
    испыта́ние на продо́льный изги́б — buckling test
    испыта́ние на прока́ливаемость — hardenability test
    испыта́ние на прохожде́ние вы́зова тлф. — signalling [ringing] test
    испыта́ние на про́чность — strength test
    испыта́ние на про́чность к декатиро́вке текст.ironing test
    испыта́ние на про́чность к изги́бу текст.deflection test
    испыта́ние на про́чность кипяче́нием текст. — boiling [boil-off] test
    испыта́ние на про́чность окра́ски текст.fastness test
    испыта́ние на про́чность прода́вливанием текст.bursting(-strength) test
    испыта́ние на про́чность шва текст.seam-slippage test
    испыта́ние на разбо́рчивость ре́чи тлв. — ( без учёта смысла) articulation test; ( с учётом смысла) intelligibility test
    испыта́ние на разда́вливание — crushing test
    испыта́ние на разда́чу ( труб) — flare test
    испыта́ние на разма́лываемость — grindability test
    испыта́ние на разры́в
    1. мех. break(ing) test
    2. текст. breaking [strength] test
    испыта́ние на разры́в поло́ски тка́ни — grab [strip] test
    испыта́ние на раска́лывание — splitting test
    испыта́ние на расплю́щивание — flattening test
    испыта́ние на рассла́ивание кож. — peel [separation] test
    испыта́ние на рассыпа́ние литейн.collapsibility test
    испыта́ние на раствори́мость — solubility test
    испыта́ние на растре́скивание — cracking test
    испыта́ние на растяже́ние — tensile [tension] test(ing)
    испыта́ние на растяже́ние при переме́нной нагру́зке — varying-rate tensile [tension] test
    испыта́ние на расхо́д то́плива ав.consumption test
    испыта́ние на релакса́цию (напряже́ний) — (stress-)relaxation test
    испыта́ние на сва́риваемость
    1. метал. weldability test
    2. кож. boiling (water) test
    испыта́ние на свойла́чиваемость текст.milling test
    испыта́ние на сгора́емость — combustibility test
    испыта́ние на сжа́тие — compression test
    испыта́ние на скоростны́е показа́тели авто — performance [speed] test
    испыта́ние на ско́рость старе́ния элк.degradation rate test
    испыта́ние на сохраня́емость — storage test
    испыта́ние на спека́емость — sintering test
    испыта́ние на срез — shearing test
    испыта́ние на срок слу́жбы — life test(ing)
    испыта́ние на срок хране́ния — shelf-life test
    испыта́ние на старе́ние — ageing test
    испыта́ние на сто́йкость к микрооргани́змам текст.pure-culture test
    испыта́ние на сто́йкость к пле́сени и грибка́м ( электрического и электронного оборудования) — mould-growth test
    испыта́ние на сто́йкость к пятнообра́зованию текст.spotting test
    испыта́ние на сцепле́ние — bond [adhesion] test
    испыта́ние на сцепле́ние отры́вом стр.strip-off adhesion test
    испыта́ние на твё́рдость — hardness test(ing) (Примечание. Отдельные виды испыта́ний на твё́рдость см. в статье определе́ние твё́рдости.)
    испыта́ние на твё́рдость опило́вкой — file test
    испыта́ние на твё́рдость, стати́ческое — static hardness test
    испыта́ние на техни́ческий преде́л (напр. прочности) — proof test
    испыта́ние на то́пливную экономи́чность — fuel-consumption test
    испыта́ние на транспорта́бельность — transportability test
    испыта́ние на трещинообразова́ние — cracking test
    испыта́ние на тропи́ческие усло́вия — tropical-exposure test
    нату́рное испыта́ние — full-scale test
    нату́рное, фрагмента́рное испыта́ние — partial system test, physical [test] simulation
    испыта́ние на уда́рную вя́зкость — impact test
    испыта́ние на уда́рную вя́зкость по Изо́ду — Izod [cantilever-beam] impact test
    испыта́ние на уда́рную вя́зкость по Шарпи́ — Sharpy [simple-beam] impact test
    испыта́ние на уплотне́ние гру́нта — compaction [consolidation] test
    испыта́ние на упру́гость
    1. elasticity test
    2. текст. extension [recovery, restorability] test
    испыта́ние на уста́лость — fatigue test
    испыта́ние на уста́лость при изги́бе — fatigue bending [endurance bending, repeated bending-stress] test
    испыта́ние на уста́лость при растяже́нии — fatigue tension test
    испыта́ние на фла́ттер — flutter test(ing)
    испыта́ние на холо́дную уса́дку ( шерсти) — cold test
    испыта́ние на холосто́м ходу́ — no-load test
    испыта́ние на центрифу́ге — centrifuge test(ing)
    испыта́ние на эксплуатацио́нные показа́тели — performance testing
    испыта́ние на эласти́чность текст.elasticity test
    испыта́ние на электри́ческую про́чность под напряже́нием, вызыва́ющим пробо́й — disruptive-discharge test, break-down test, puncture test
    испыта́ние на электри́ческую про́чность под напряже́нием ни́же пробивно́го — withstand-voltage test
    неразруша́ющее испыта́ние — non-destructive test(ing)
    испыта́ние одино́чной ни́ти текст. — single-end [single-strand] test
    испыта́ние отму́чиванием — decantation test
    испыта́ние па́смой текст.skein test
    испыта́ние пая́льной ла́мпой — blow-pipe test
    перви́чное испыта́ние — primary test
    испыта́ние перего́нкой — distillation test
    повто́рное испыта́ние — duplicate test
    испыта́ние погруже́нием — immersion test
    испыта́ние под давле́нием — pressure test
    испыта́ние под нагру́зкой — load(ing) test
    испыта́ние под напряже́нием эл.voltage test (on a cable)
    полево́е испыта́ние — field test
    испыта́ние по сокращё́нной програ́мме — abbreviated testing, abbreviated tests
    предвари́тельное испыта́ние — preliminary test
    предмонта́жное испыта́ние — pre-installation test
    предпусково́е испыта́ние — pre-operational test
    испыта́ние при высо́кой температу́ре — high-temperature test
    приё́мо-сда́точные испыта́ния — approval tests
    приё́мочные испыта́ния — (official) acceptance tests
    испыта́ние при заме́дленном хо́де проце́сса — slow test
    испыта́ние при ко́мнатной температу́ре — room-temperature test
    испыта́ние при ни́зкой температу́ре — subzero [low-temperature, cold] test
    испыта́ние при постоя́нной нагру́зке — steady [constant] load test
    испыта́ние при стати́ческой нагру́зке — static test
    испыта́ние при цикли́ческих нагру́зках — cyclic load test
    испыта́ние прозво́нкой [прозва́ниванием] жарг., эл.continuity test(ing)
    испыта́ние прока́ткой на клин — taper rolling test
    промы́шленные испыта́ния — commercial [production] tests
    пропульси́вное испыта́ние мор.propulsion trial
    испыта́ние прямы́м окисле́нием — direct oxidation test
    разго́нное испыта́ние — overspeed test
    испыта́ние раке́тного дви́гателя, огнево́е — test (bed) firing
    рекурси́вное испыта́ние — life (service) test
    испыта́ние сбра́сыванием (напр. кокса, огнеупора) — shatter test
    испыта́ние сварно́го соедине́ния — weld test
    испыта́ние сварно́го шва — weld test
    сда́точное испыта́ние мор.delivery trial
    сенситометри́ческое испыта́ние кфт.sensitometric test
    склерометри́ческое испыта́ние — scratch(-hardness) test
    скоростно́е испыта́ние мор.speed trial
    сокращё́нное испыта́ние — abbreviated test
    испыта́ние с разруше́нием ( образца) — destruction test
    испыта́ние сро́стков ( жил кабеля) — joint [splice] test
    стати́ческое испыта́ние — static test
    сте́ндовое испыта́ние — bench test; ракет. captive test; мор. testbed trial
    стопроце́нтное испыта́ние — total-lot [100%] test
    испыта́ние с части́чным разруше́нием ( образца) — semi-destructive test
    теплово́е испыта́ние — thermal test
    техни́ческие испыта́ния — engineering tests
    испыта́ние ти́па (проводится в соответствии с требованиями ИКАО при определении полётопригодности данного типа самолёта и выдачи сертификации) ав.type test
    типово́е испыта́ние (испытывается как правило, первый экземпляр данного типа конструкции; проводится по полной и/или расширенной программе, в отличие от контро́льного испыта́ния) — type test
    испыта́ние травле́нием — pickle test
    испыта́ние тре́нием — friction test
    тя́говое испыта́ние — pull test
    уско́ренное испыта́ние — accelerated test
    фациа́льные испыта́ния горн.environmental testing
    физи́ческие испыта́ния — physical testing
    испыта́ние форму́емости — remoulding test
    хими́ческие испыта́ния — chemical testing
    ходово́е испыта́ние
    1. авто (on-the-)road test
    2. мор. performance [sea] trial
    ходово́е, прогресси́вное испыта́ние мор.standardization trial
    испыта́ние холо́дной штампо́вкой — cold-pressing test
    цикли́ческое испыта́ние — cyclic test
    испыта́ние чугуна́ на толщину́ отбелё́нного сло́я — chill test
    шварто́вное испыта́ние мор.dock(side) trial
    эксплуатацио́нные испыта́ния — service tests

    Русско-английский политехнический словарь > испытание

  • 17 TONGUE

    • Birds are entangled by their feet, and men by their tongues - Язык мой - враг мой (Я)
    • Boneless tongue, so small and weak, can crush and kill (The) - Слово не стрела, а пуще стрелы разит (C)
    • Don't cut off your head with your tongue - Язык до добра не доведет (Я), Язык мой - враг мой (Я)
    • Don't let your tongue run away with your brains - Сперва подумай, потом говори (C)
    • Drunken tongue tells what's on a sober mind (A) - Что у трезвого на уме, то у пьяного на языке (4)
    • Empty head, like a bell, has a long tongue (An) - У дурака язык впереди ног бежит (У), Что на уме, то и на языке а (Ч)
    • False tongue will hardly speak the truth (A) - Кто привык лгать, тому трудно отвыкать (K)
    • Fool's tongue is long enough to cut his /own/ throat (A) - Язык мой - враг мой (Я)
    • Fool's tongue runs before his wit (А) - У дурака язык впереди ног бежит (У)
    • He cannot speak well that cannot hold his tongue - В добрый час молвить, в худой промолчать (B)
    • He knows much who knows how to hold his tongue - Говори меньше, умнее будешь (Г)
    • He who has a tongue in his head can travel all the world over - Спрос все укажет (C), Язык до Киева доведет (Я)
    • He who has a tongue in his mouth can find his way anywhere - Язык до Киева доведет (Я)
    • He who has a tongue may go to Rome - Язык до Киева доведет (Я)
    • He who uses his tongue will reach his destination - Спрос все укажет (C), Язык до Киева доведет (Я)
    • Honey tongue, a heart of gall (A) - На языке медок, а на сердце ледок (H)
    • It is better to play with the ears than with the tongue - Больше слушай, меньше говори (Б)
    • Keep your tongue within your teeth (in your mouth) - Ешь пирог с грибами, да держи язык за зубами (E)
    • Let not thy tongue run away with thy brains - Сперва подумай, потом говори (C)
    • Let not your tongue cut your throat - Язык до добра не доведет (Я), Язык мой - враг мой (Я)
    • Long tongue has (is a sign of) a short hand (A) - Кто много сулит, тот мало делает (K)
    • Man's tongue is soft and bone does lack, yet a stroke therewith may break a man's back - Слово не стрела, а пуще стрелы разит (C)
    • No sword bites so bitterly as an evil tongue - Слово не стрела, а пуще стрелы разит (C)
    • Still tongue makes a wise head (A) - Говори меньше, умнее будешь (Г)
    • Still tongue, wise head - Кто молчит, тот двух научит (K)
    • Tongue breaketh bone, though itself hath none (The) - Палка по мясу бьет, а слово до костей достает (П)
    • Tongue ever returns to the aching tooth (The) - У кого что болит, тот о том и говорит (У)
    • Tongue is more venomous than a serpent (The) - Слово не стрела, а пуще стрелы разит (C)
    • Tongue - lashing leaves no scars (A) - Брань на вороту не виснет (B)
    • Tongue offends and the ears get the cuffing (The) - Руки согрешили, а спина виновата (P)
    • Tongue of idle persons is never idle (The) - Возьмется болтун болтать - ничем не унять (B)
    • Tongue talks at the head's cost (The) - Язык до добра не доведет (Я), Язык мой - враг мой (Я)
    • Turn your tongue seven times before speaking - Сперва подумай, потом говори (C)
    • You can't hurt your tongue by speaking softly - От вежливых слов язык не отсохнет (O)

    Русско-английский словарь пословиц и поговорок > TONGUE

  • 18 государственный

    1) General subject: established (о церкви), government, governmental, high, imperial, national, political, public, state, state owned, state run, statesmanlike, public-sector (public-sector jobs, public-sector employees, public-sector workers), state-run (state-run restaurants, a state-run school), country-wide, countrywide, nation-wide, nationwide
    2) Military: government-owned
    3) Mathematics: of the state
    4) Law: demesnial (об имуществе), federal, official, state criminal, state-owned
    7) Politics: publicly owned, sovereign (напр., the State may authorize private organizations to carry out certain sovereign functions), quasi-corporate

    Универсальный русско-английский словарь > государственный

  • 19 Я-8

    ВЫСУНУВ (ВЫСУНУВШИ, ВЫСУНЯ obs) ЯЗЫК (ЯЗЫКИ rare) coll Verbal Adv these forms only usu. used with impfv verbs var. with язык may be used with pl subj fixed WO
    1. бежать, удирать и т. п. \Я-8 (to run, run away) very quickly
    like the dickens
    like mad like a bat out of hell.
    Мальчишки залезли в колхозный сад, но сторож их заметил, и им пришлось удирать, высунув язык. The boys got into the kolkhoz garden, but the guard saw them and they had to run like the dickens.
    2. бегать, мотаться и т. п. \Я-8 (to run, be on the go etc) nonstop, without taking a breather (because one is overwhelmed by the number of things he has to do)
    with one's tongue hanging out
    like mad till one is dropping in his tracks.
    Я такой же кинозритель, какой в своё время был театрал. Но сыновья мои большие любители, и когда кинофестиваль, бегают по Москве высунув язык и меня тащат... (Рыбаков 1). I'm about as much of a film-goer as I used to be a theatre-goer in the old days, but my sons are great film-fans and during the festival they rush all over Moscow with their tongues hanging out, and dragging me along with them (1a).

    Большой русско-английский фразеологический словарь > Я-8

  • 20 высунув язык

    ВЫСУНУВ <ВЫСУНУВШИ, ВЫСУНЯ obs> ЯЗЫК < ЯЗЫКИ rare> coll
    [Verbal Adv; these forms only; usu. used with impfv verbs; var. with язык may be used with pl subj; fixed WO]
    =====
    1. бежать, удирать и т.п. высунув язык (to run, run away) very quickly:
    - like a bat out of hell.
         ♦ Мальчишки залезли в колхозный сад, но сторож их заметил, и им пришлось удирать, высунув язык. The boys got into the kolkhoz garden, but the guard saw them and they had to run like the dickens.
    2. бегать, мотаться и т.п. высунув язык (to run, be on the go etc) nonstop, without taking a breather (because one is overwhelmed by the number of things he has to do):
    - till one is dropping in his tracks.
         ♦ Я такой же кинозритель, какой в своё время был театрал. Но сыновья мои большие любители, и когда кинофестиваль, бегают по Москве высунув язык и меня тащат... (Рыбаков 1). I'mabout as much of a film-goer as I used to be a theatre-goer in the old days, but my sons are great film-fans and during the festival they rush all over Moscow with their tongues hanging out, and dragging me along with them (1a).

    Большой русско-английский фразеологический словарь > высунув язык

См. также в других словарях:

  • Run London — (2001 ) is an annual 10 km run (or series of runs), organised by Nike and held within London, UK. The events are unique in having different themes and marketing campaigns each year.Events2001 Kew GardensThe run took place on Sunday July 22nd with …   Wikipedia

  • run — ► VERB (running; past ran; past part. run) 1) move at a speed faster than a walk, never having both or all feet on the ground at the same time. 2) move about in a hurried and hectic way. 3) pass or cause to pass: Helen ran her fingers through her …   English terms dictionary

  • Run Baby Run (Garbage song) — Infobox Single Name = Run Baby Run Artist = Garbage from Album = Bleed Like Me B side = Honeybee Never Be Free Badass (October 2003 Ruff Demo Released = 10 July 2005 (Australia) 1 August 2005 (Europe) Format = CD maxi Recorded = 2003 2004 Smart… …   Wikipedia

  • run — runnable, adj. runnability, n. /run/, v., ran, run, running, n., adj. v.i. 1. to go quickly by moving the legs more rapidly than at a walk and in such a manner that for an instant in each step all or both feet are off the ground. 2. to move with… …   Universalium

  • Run out — For the term run out, used in equestrian sport, see refusal Run out is a method of dismissal in the sport of cricket. It is governed by Law 38 of the Laws of cricket.The rulesA batsman is out Run out if at any time while the ball is in play no… …   Wikipedia

  • run — [c]/rʌn / (say run) verb (ran, run, running) –verb (i) 1. to move quickly on foot, so as to go more rapidly than in walking (in bipedal locomotion, so that for an instant in each step neither foot is on the ground). 2. to do this for exercise, as …  

  • run — verb (runs, running, ran ran; past participle run) 1》 move at a speed faster than a walk, never having both or all feet on the ground at the same time.     ↘enter or be entered in a race.     ↘(of hounds) chase or hunt their quarry.     ↘(of a… …   English new terms dictionary

  • run into — {v.} 1. To mix with; join with. * /If the paint brush is too wet, the red paint will run into the white on the house./ * /This small brook runs into a big river in the valley below./ 2. To add up to; reach; total. * /Car repairs can run into a… …   Dictionary of American idioms

  • run into — {v.} 1. To mix with; join with. * /If the paint brush is too wet, the red paint will run into the white on the house./ * /This small brook runs into a big river in the valley below./ 2. To add up to; reach; total. * /Car repairs can run into a… …   Dictionary of American idioms

  • run\ into — v 1. To mix with; join with. If the paint brush is too wet, the red paint will run into the white on the house. This small brook runs into a big river in the valley below. 2. To add up to; reach; total. Car repairs can run into a lot of money.… …   Словарь американских идиом

  • run afoul of — I see run II run afoul (or foul) of 1) Nautical collide or become entangled with (an obstacle or another vessel) another ship ran afoul of us 2) come into conflict with; go against the act may run afoul of consumer protection legislation …   Useful english dictionary

Поделиться ссылкой на выделенное

Прямая ссылка:
Нажмите правой клавишей мыши и выберите «Копировать ссылку»